Skip to main content
Log in

Taylor–Galerkin–Legendre-wavelet approach to the analysis of a moving fin with size-dependent thermal conductivity and temperature-dependent internal heat generation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In heat transfer, fins are commonly used to enhance the heat transfer rate from surfaces and are widely applicable in heat exchangers and thermal energy storage systems. The material used for fins typically has a high heat conductivity. While the study of temperature-dependent heat conductivity for fins is already available, an insufficient mathematical description is observed in the case of size-dependent heat conductivity and convective heat transfer. In the current work, a heat transfer study is presented to estimate the temperature field in a moving fin that accounts for size-dependent heat conductivity and internal heat generation that depends on temperature under periodic boundary conditions. To observe the temperature field, we have developed a hybrid numerical method based on Taylor–Galerkin and Legendre wavelets. The stability analysis of the developed method is discussed in detail. Our numerical method shows excellent agreement with the analytical solution obtained in a special case. The impact of problem parameters is extensively discussed. This study shows that fin temperature decreases periodically with a space-dependent heat conductivity. In addition, for a problem which accounts for constant heat conductivity and movable fin, have greater temperature response, and standard problem which accounts for constant heat conductivity have weaker temperature response while it is between them for a problem that includes size-dependent heat conductivity and moving fin. It is shown that fin efficiency can be improved by lowering the value of the Knudsen number. Moreover, fin problem with fixed thermal conductivity offer greater efficiency in comparison with size-dependent thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

Abbreviations

\(A_\textrm{c}\) :

Cross-sectional area (\(\mathrm m^2\))

c :

Specific heat (\(\mathrm{Jkg^{-1} K^{-1}}\))

h :

Coefficient of heat transfer (\(\mathrm{ Wm^{-2}K^{-1}}\))

P :

Perimeter (\(\mathrm m\))

\(q^*\) :

Heat generated inside fin (\(\mathrm {W m^{-3}}\))

\(q_{\infty }^*\) :

Heat generated inside fin at sink temperature (\(\mathrm {Wm^{-3}}\))

u :

Unidirectional speed of fin (\(\mathrm {m s^{-1}}\))

F :

Temperature (\(\mathrm K\))

\(F_\infty\) :

Sink temperature (\(\mathrm K\))

\(F_\textrm{b,m}\) :

Base temperature (\(\mathrm K\))

T :

Non-dimensional temperature

L :

Characteristic length of the system (\(\mathrm m\))

l :

Phonon mean free path (\(\mathrm m\))

X :

Spatial variable (\(\mathrm m\))

x :

Dimensionless spatial variable

J :

Non-dimensional fin parameter

G :

Non-dimensional generation number

\(A _{\text m}\) :

Non-dimensional amplitude

t :

Non-dimensional time

Pe :

Peclet number

\(K _{\text n}\) :

Knudsen number

\(\epsilon _{\text G}\) :

Non-dimensional internal heat generation

\(\omega\) :

Non-dimensional frequency

\(\epsilon\) :

Parameter of internal heat generation (\(\mathrm K^{-1}\))

\(\Omega\) :

Periodicity (\(\mathrm s^{-1}\))

\(\tau\) :

Time (\(\mathrm s\))

\(\rho\) :

Density (\(\mathrm {kgm^{-3}}\))

\(\kappa\) :

Heat conductivity (\(\mathrm {Wm^{-1} K^{-1}}\))

\(\kappa _0\) :

Bulk heat conductivity (\(\mathrm {Wm^{-1}K^{-1}}\))

References

  1. Kraus AD, Aziz A, Welty JR. Extended surface heat transfer. New York: Wiley; 2002.

    Google Scholar 

  2. Ghalambaz M, Jamesahar E, Ismael MA, Chamkha AJ. Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. Int J Therm Sci. 2017;111:256–73.

    Article  CAS  Google Scholar 

  3. Izadi M, Behzadmehr A, Shahmardan MM. Effects of inclination angle on mixed convection heat transfer of a nanofluid in a square cavity. Int J Comput Methods Eng Sci Mech. 2015;16:11–21.

    Article  CAS  Google Scholar 

  4. Mehryan SAM, Ghalambaz M, Feeoj RK, Hajjar A, Izadi M. Free convection in a trapezoidal enclosure divided by a flexible partition. Int J Heat Mass Transf. 2020;149: 119186.

    Article  Google Scholar 

  5. Izadi M, Fagehi H, Imanzadeh A, Altnji S, Hamida MBB, Sheremet MA. Influence of finned charges on melting process performance in a thermal energy storage. Therm Sci Eng Prog. 2023;37: 101547.

    Article  Google Scholar 

  6. Izadi M, Ghalambaz M, Mehryan SAM. Location impact of a pair of magnetic sources on melting of a magneto-Ferro phase change substance. Chin J Phys. 2020;65:377–88.

    Article  Google Scholar 

  7. Izadi M, Hajjar A, Alshehri HM, Saleem A, Galal AM. Analysis of applying fin for charging process of phase change material inside H-shaped thermal storage. Int Commun Heat Mass Transf. 2022;139: 106421.

    Article  Google Scholar 

  8. Izadi M, Hajjar A, Alshehri HM, Sheremet M, Galal AM. Charging process of a partially heated trapezoidal thermal energy storage filled by nano-enhanced PCM using controlable uniform magnetic field. Int Communi Heat Mass Transf. 2022;138: 106349.

    Article  Google Scholar 

  9. Izadi M, Alshehri HM, Hosseinzadeh F, Rad MS, Hamida MBB. Numerical study on forced convection heat transfer of TiO2/water nanofluid flow inside a double-pipe heat exchanger with spindle-shaped turbulators. Eng Analy Bound Elem. 2023;150:612–23.

    Article  Google Scholar 

  10. Fadaei M, Izadi M, Assareh E, Ershadi A. Conjugated non-Newtonian phase change process in a shell and tube heat exchanger: A parametric-geometric analysis. Appl Therm Eng. 2023;220: 119795.

    Article  CAS  Google Scholar 

  11. Huu-Quan D, Rostami AM, Rad MS, Izadi M, Hajjar A, Xiong Q. 3D numerical investigation of turbulent forced convection in a double-pipe heat exchanger with flat inner pipe. Appl Therm Eng. 2021;182: 116106.

    Article  Google Scholar 

  12. Shehzad SA, Alshuraiaan B, Kamel MS, Izadi M, Ambreen T. Influence of fin orientation on the natural convection of aqueous-based nano-encapsulated PCMs in a heat exchanger equipped with wing-like fins. Chem Eng Proc - Proc Intensif. 2021;160: 108287.

    Article  CAS  Google Scholar 

  13. Izadi M, Shahmardan MM, Norouzi M, et al. Cooling performance of a nanofluid flow in a heat sink microchannel with axial conduction effect. Appl Phys A. 2014;117:1821–33.

    Article  CAS  Google Scholar 

  14. Izadi M, Shahmardan MM, Rashidi AM. Study on Thermal and Hydrodynamic Indexes of a Nanofluid Flow in a Micro Heat Sink. Chall Nano Micro Scale Sci Tech. 2013;1:53–63.

    Google Scholar 

  15. Xiong Q, Hajjar A, Alshuraiaan B, Izadi M, Altnji S, Shehzad SA. State-of-the-art review of nanofluids in solar collectors: A review based on the type of the dispersed nanoparticles. J Clean Prod. 2021;310: 127528.

    Article  CAS  Google Scholar 

  16. Xiong Q, Altnji S, Tayebi T, Izadi M, Hajjar A, Sundén B, Li LKB. A comprehensive review on the application of hybrid nanofluids in solar energy collectors. Sust Energ Techn Asses. 2021;47: 101341.

    Google Scholar 

  17. Xiong Q, Tayebi T, Izadi M, Siddiqui AA, Ambreen T, Li LKB. Numerical analysis of porous flat plate solar collector under thermal radiation and hybrid nanoparticles using two-phase model. Sust Energ Techn Asses. 2021;47: 101404.

    Google Scholar 

  18. Izadi M, Saleem A, Alshehri HM, et al. Influence of geometric parameters on the charging process of PCM in semi-circular thermal storages for energy management. Environ Sci Pollut Res. 2023;30:59765–80.

    Article  CAS  Google Scholar 

  19. Izadi M, Sheremet M, Hajjar A, Galal AM, Mahariq I, Jarad F, Hamida MBB. Numerical investigation of magneto-thermal-convection impact on phase change phenomenon of Nano-PCM within a hexagonal shaped thermal energy storage. Appl Therm Eng. 2023;223: 119984.

    Article  CAS  Google Scholar 

  20. Alshuraiaan B, Izadi M, Sheremet MA. Numerical study on charging performance of multi-enclosed thermal storage: multiple versus integrated thermal storage. Case Stud Therm Eng. 2022;33: 101954.

    Article  Google Scholar 

  21. Izadi M, Assad MEH. Chapter 15 - Use of nanofluids in solar energy systems. In: El Haj Mamdouh, Assad M, Rosen A, editors. Design and performance optimization of renewable energy systems. UK: Academic Press; 2021. p. 221–50.

    Chapter  Google Scholar 

  22. Izadi M, Sheremet M, Alshehri HM, Ambreen T, Doranehgard MH. Numerical study on charging process inside a grid-structure thermal storage. J Ener Stor. 2022;45: 103522.

    Article  Google Scholar 

  23. Shehzad SA, Mabood F, Rauf A, Izadi M, Abbasi FM. Rheological features of non-Newtonian nanofluids flows induced by stretchable rotating disk. Phys Scr. 2021;96: 035210.

    Article  CAS  Google Scholar 

  24. Sajjadi H, Delouei AA, Mohebbi R, Izadi M, Succi S. Natural convection heat transfer in a porous cavity with sinusoidal temperature distribution using cu/water nanofluid: double MRT lattice Boltzmann method. Commun Comput Phys. 2021;29:292–318.

    Article  Google Scholar 

  25. Izadi M, Shahmardan MM, Behzadmehr A, Rashidi AM, Amrollah A. Modeling of effective thermal conductivity and viscosity of carbon structured nanofluid. Chall Nano Micro Scale Sci Tech. 2015;3:1–13.

    Google Scholar 

  26. Lanjwani HB, Chandio MS, Anwar MI, et al. Dual solutions of time-dependent magnetohydrodynamic stagnation point boundary layer micropolar nanofluid flow over shrinking/stretching surface. Appl Math Mech-Engl Ed. 2021;42:1013–28.

    Article  Google Scholar 

  27. Karimian SAM, Straatman AG. A thermal periodic boundary condition for heating and cooling processes. Int J Heat Fluid Flow. 2007;28:329–39.

    Article  Google Scholar 

  28. Myers GE. Analytical methods in heat conduction. New York: McGraw-Hill; 1971.

    Google Scholar 

  29. Yang JW. Periodic heat transfer straight fins. ASME J Heat Transf. 1972;94:310–4.

    Article  Google Scholar 

  30. Hatami M, Jafaryar M, Ganji DD, Gorji-Bandpy M. Optimization of finned-tube heat exchangers for diesel exhaust waste heat recovery using CFD and CCD techniques. Int Commun Heat Mass Transf. 2014;57:254–63.

    Article  CAS  Google Scholar 

  31. Hazarika SA, Bhanja D, Nath S, Kundu B. Geometric optimization and performance study of a constructal T-shaped fin under simultaneous heat and mass transfer. Appl Therm Eng. 2016;109:162–74.

    Article  Google Scholar 

  32. Hatami M, Ganji DD, Gorji-Bandpy M. Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery. Case Stud Therm Eng. 2014;4:53–64.

    Article  Google Scholar 

  33. Ghasemi SE, Hatami M, Ganji DD. Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation. Case Stud Therm Eng. 2014;4:1–8.

    Article  Google Scholar 

  34. Khaled AA. Investigation of heat transfer enhancement through permeable fins. ASME J Heat Transf. 2010;132: 034503.

    Article  Google Scholar 

  35. Kiwan S, Zeitoun O. Natural convection in a horizontal cylindrical annulus using porous fins. Int J Numer Methods Heat Fluid Flow. 2008;18:618–34.

    Article  Google Scholar 

  36. Ghasemi SE, Valipour P, Hatami M, Ganji DD. Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method. J Cent South Univ. 2014;21:4592–8.

    Article  CAS  Google Scholar 

  37. Cuce E, Cuce PM. A successful application of homotopy perturbation method for efficiency and effectiveness assessment of longitudinal porous fins. Ener Convers Manage. 2015;93:92–9.

    Article  Google Scholar 

  38. Nguyen H, Aziz A. Heat transfer from convecting-radiating fins of different profile shapes. Heat Mass Transf. 1992;27:67–72.

    CAS  Google Scholar 

  39. Chaudhary RK, Chaurasiya V, Awad MM, Singh J. A numerical study on the thermal response in multi-layer of skin tissue subjected to heating and cooling procedures. Eur Phys J Plus. 2022;137:120.

    Article  Google Scholar 

  40. Ma J, Sun YS, Li BW, Chen H. Spectral collocation method for radiativeconductive porous fin with temperature dependent properties. Ener Convers Manage. 2016;111:279–88.

    Article  Google Scholar 

  41. Sun YS, Ma J, Li BW, Guo ZX. Predication of nonlinear heat transfer in a convective-radiative fin with temperature dependent properties by the collocation spectral method. Numer Heat Transf B. 2016;69:63–8.

    Article  Google Scholar 

  42. Hatami M, Ahangar GRM, Ganji DD, Boubaker K. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Ener Convers Manage. 2014;84:533–40.

    Article  CAS  Google Scholar 

  43. Torabi M, Aziz A. Thermal performance and efficiency of convective-radiative T-shaped fins with temperature dependent thermal conductivity, heat transfer coefficient and surface emissivity. Int Commun Heat Mass Transf. 2012;39:1018–29.

    Article  Google Scholar 

  44. Aziz A, Fang TG. Alternative solutions for longitudinal fins of rectangular, trapezoidal, and concave parabolic profiles. Ener Convers Manage. 2010;51:2188–94.

    Article  Google Scholar 

  45. Bhanja D, Kundu B, Aziz A. Enhancement of heat transfer from a continuously moving porous fin exposed in convective-radiative environment. Ener Convers Manage. 2014;88:842–53.

    Article  Google Scholar 

  46. Mosayebidorcheh S, Hatami M, Mosayebidorcheh T, Ganji DD. Optimization analysis of convective radiative longitudinal fins with temperature-dependent properties and different section shapes and materials. Ener Convers Manage. 2015;106:1286–94.

    Article  Google Scholar 

  47. Das R, Prasad KD. Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm. Swarm Evol Comput. 2017;23:27–39.

    Article  Google Scholar 

  48. Singh S, Kumar D, Rai KN. Convective-radiative fin with temperature dependent thermal conductivity, heat transfer coefficient and wavelength dependent surface emissivity. Propuls Power Res. 2014;3:207–21.

    Article  Google Scholar 

  49. Font F. A one-phase Stefan problem with size-dependent thermal conductivity. Appl Math Model. 2018;63:172–8.

    Article  Google Scholar 

  50. Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N, Zhang G. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phy Report. 2020;860:1–26.

    Article  CAS  Google Scholar 

  51. Chaurasiya V, Chaudhary RK, Wakif A, Singh J. A one-phase Stefan problem with size-dependent thermal conductivity and moving phase change material under the most generalized boundary condition. Waves Random and Compl Med. 2022. https://doi.org/10.1080/17455030.2022.2092913.

    Article  Google Scholar 

  52. Al-Khazaal AZ. Effects of composite material fin conductivity on natural convection heat transfer and entropy generation inside 3D cavity filled with hybrid nanofluid. J Therm Anal Calorim. 2022;147:3709–20.

    Article  CAS  Google Scholar 

  53. Venkitesh V, Mallick A. Thermal analysis of a convective-conductive-radiative annular porous fin with variable thermal parameters and internal heat generation. J Therm Anal Calorim. 2022;147:1519–33.

    Article  CAS  Google Scholar 

  54. Kesavan D, Kumar RS, Marimuthu P. Heat transfer performance of air-cooled pin-fin heatsinks: a review. J Therm Anal Calorim. 2023;148:623–49.

    Article  CAS  Google Scholar 

  55. Ma J, Sun Y, Li B. Spectral collocation method for transient thermal analysis of coupled conductive, convective and radiative heat transfer in the moving plate with temperature dependent properties and heat generation. Int J Heat Mass Transf. 2017;114:469–82.

    Article  Google Scholar 

  56. Ma J, Sun Y, Li B. Simulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method. Int J Therm Sci. 2017;118:475–87.

    Article  CAS  Google Scholar 

  57. Singh S, Kumar D, Rai KN. Analytical solution of Fourier and non-Fourier heat transfer in longitudinal fin with internal heat generation and periodic boundary condition. Int J Therm Sci. 2018;125:166–75.

    Article  Google Scholar 

  58. Gouran S, Ghasemi SE, Mohsenian S. Effect of internal heat source and non-independent thermal properties on a convective-radiative longitudinal fin. Alex Eng J. 2022;61:8545–54.

    Article  Google Scholar 

  59. Sharma SK, Kumar D. A numerical study of new fractional model for convective straight fin using fractional-order Legendre functions. Chaos Solitons Fract. 2020;141: 110282.

    Article  Google Scholar 

  60. Ma J, Sun Y, Li B. Simulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method. Int J Therm Sci. 2017;118:475–87.

    Article  CAS  Google Scholar 

  61. Kundu B, Lee KS. A Non-Fourier analysis for transmitting heat in fins with internal heat generation. Int J Heat Mass Transf. 2013;64:1153–62.

    Article  Google Scholar 

  62. Alshuraiaan B, Shahrestani AB, Izadi M. Numerical studys on passive paramerters of a fluid-solid interaction problem derived by natural convection in a circular enclosure. Alex Eng J. 2023;63:415–26.

    Article  Google Scholar 

  63. Izadi M, Shahmardan MM, Maghrebi MJ, Behzadmehr A. Numerical study of developed laminar mixed convection of \(Al_2 O_3\)/water nanofluid in an annulus. Chem Eng Commun. 2013;200:878–94.

    Article  CAS  Google Scholar 

  64. Izadi M. Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber. Chinese J Chem Eng. 2020;28:1203–13.

    Article  CAS  Google Scholar 

  65. Izadi M, Bastani B, Sheremet MA. Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach. Adv Powder Tech. 2020;31:2493–504.

    Article  CAS  Google Scholar 

  66. Shahrestani AB, Alshuraiaan B, Izadi M. Combined natural convection-FSI inside a circular enclosure divided by a movable barrier. Int Commun Heat Mass Transf. 2021;126: 105426.

    Article  Google Scholar 

  67. Dogonchi AS, Ganji DD. Convection-radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation. Appl Therm Eng. 2016;103:705–12.

    Article  Google Scholar 

  68. Chaurasiya V, Rai KN, Singh J. Heat transfer analysis for the solidification of a binary eutectic system under imposed movement of the material. J Therm Anal Calorim. 2022;147:3229–46.

    Article  CAS  Google Scholar 

  69. Chaurasiya V, Rai KN, Singh J. A study of solidification on binary eutectic system with moving phase change material. Therm Sci Eng Prog. 2021;25: 101002.

    Article  CAS  Google Scholar 

  70. Chaurasiya V, Kumar D, Rai KN, Singh J. A computational solution of a phase-change material in the presence of convection under the most generalized boundary condition. Therm Sci Eng Prog. 2020;20: 100664.

    Article  Google Scholar 

  71. Ahmadikia H, Rismanian M. Analytical solution of non-Fourier heat conduction problem on a fin under periodic boundary conditions. J Mech Sci Tech. 2011;25:2919–26.

    Article  Google Scholar 

  72. Chaurasiya V, Chaudhary RK, Awad MM, Singh J. A numerical study of a moving boundary problem with variable thermal conductivity and temperature-dependent moving PCM under periodic boundary condition. Eu Phys J Plus. 2022;137:714.

    Article  CAS  Google Scholar 

  73. Calvo-Schwarzwälder M. Non-local effects and size-dependent properties in Stefan problems with Newton cooling. Appl Math Model. 2019;76:513–25.

    Article  Google Scholar 

  74. Kumar A, Rajeev A. A Stefan problem with moving phase change material, variable thermal conductivity and periodic boundary condition. Appl Math Comput. 2020;386: 125490.

    Google Scholar 

  75. Alvarez FX, Jou D. Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl Phys Lett. 2007;90: 083109.

    Article  Google Scholar 

  76. Kumar BVR, Mehra M. A wavelet-Taylor Galerkin methods for parabolic and hyperbolic partial differential equations. Int J Comput Meth. 2005;2:75–97.

    Article  Google Scholar 

  77. Kumar BVR, Mehra M. A three-step wavelet Galerkin method for parabolic and hyperbolic partial differential equations. Int J Comput Math. 2006;83:143–57.

    Article  Google Scholar 

  78. Sangwan V, Kumar BVR, Murthy SVSSNVGK, Nigam M. Three-step Taylor Galerkin method for singularity perturbed generalized Hodgkin-Huxley equation. Int J Model Simul Sci Comput. 2010;1:257–76.

    Article  Google Scholar 

  79. Dağ İ, Canivar A, Şahin A. Taylor-Galerkin method for advection-diffusion equation. Kybernetes. 2011;40:762–77.

    Article  Google Scholar 

  80. Razzaghi M, Yousefi S. The Legendre wavelets operational matrix of integration. Int J Syst Sci. 2001;32:495–502.

    Article  Google Scholar 

  81. Kumar KH, Vijesh VA. Legendre wavelet-based iterative schemes for fourth-order elliptic equations with nonlocal boundary conditions. Eng Comput. 2020;36:1371–8.

    Article  Google Scholar 

  82. Ray SS, Gupta AK. Two-dimensional Legendre wavelet method for travelling wave solutions of time-fractional generalized seventh order KdV equation. Comput Math Appl. 2017;73:1118–33.

    Article  Google Scholar 

  83. Yadav S, Upadhyay S, Rai KN. Legendre Wavelet Modified Petrov-Galerkin Method in Two-Dimensional Moving Boundary Problem. Zeit fur Naturf A. 2017;73:23–34.

    Article  Google Scholar 

  84. Yadav S, Kumar D, Rai KN. Finite element Legendre wavelet Galerkin approach to inward solidification in simple body under most generalized boundary condition. Zeit fur Naturf A. 2014;69(10–11):501–10.

    Article  CAS  Google Scholar 

  85. Turkyilmazoglu M. Stefan problems for moving phase change materials and multiple solutions. Int J Therm Sci. 2018;126:67–73.

    Article  Google Scholar 

  86. Chaurasiya V, Singh J. An analytical study of coupled convective heat and mass transfer with volumetric heating describing sublimation of a porous body under most sensitive temperature inputs: Application of freeze-drying. Int J Heat Mass Transf. 2023;214: 124294.

    Article  Google Scholar 

  87. DaCunha JJ. Stability for time varying linear dynamic systems on time scales. J Comput Appl Math. 2005;176:381–410.

    Article  Google Scholar 

  88. Sobamowo MG, Adeleye OA, Yinusa AA, Oyekeye MO, Waheed MA. Significance of fin tip temperature on the heat transfer rate and thermal efficiency of a convective-radiative rectangular fin with variable thermal conductivity. J Eng Therm Sci. 2021;1:65–80.

    Google Scholar 

  89. Lin Ch-N, Jang J-Y. A two-dimensional fin efficiency analysis of combined heat and mass transfer in elliptic fins. Int J Heat Mass Transf. 2002;45:3839–47.

    Article  CAS  Google Scholar 

  90. Purwadi PK, Seen M. The efficiency and effectiveness of fins made from two different materials in unsteady-state. J Phys conf ser. 2020;1511: 012082.

    Article  Google Scholar 

  91. Kumaravelu T, Saadon S, Talib ARA. Heat transfer enhancement of a Stirling engine by using fins attachment in an energy recovery system. Energy. 2022;239: 121881.

    Article  Google Scholar 

Download references

Acknowledgements

Vikas Chaurasiya, one of the authors, is grateful to DST (INSPIRE)-New Delhi (India) for the Senior Research Fellowship vide Ref. No. DST/INSPIRE/03/2017/000184 (i) Ref. no/Math/2017-18/March 18/347.

Author information

Authors and Affiliations

Authors

Contributions

VC: Formulation of model and numerical method, analytical solution of mathematical model, figure plotting, writing, analysis and data curation and original draft preparation. SU: Formulation of numerical method, and reviewing manuscript. KNR: Supervision, and reviewing manuscript. JS: Supervision and formulation of model.

Corresponding author

Correspondence to Jitendra Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasiya, V., Upadhyay, S., Rai, K.N. et al. Taylor–Galerkin–Legendre-wavelet approach to the analysis of a moving fin with size-dependent thermal conductivity and temperature-dependent internal heat generation. J Therm Anal Calorim 148, 12565–12581 (2023). https://doi.org/10.1007/s10973-023-12613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12613-3

Keywords

Navigation