Skip to main content
Log in

Maximization of performance of a PCM latent heat storage system with innovative cavity shape and optimum heating tube position

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The melting behavior of a phase change material (lauric acid) placed in various shaped cavities having an inner heated tube is studied numerically. The present investigation concerns the influence of various shaped cavities and the position of the tube on the melting rate and heat transfer process of the phase change material. Finite element method has been employed to solve the governing differential equation along with boundary conditions. The PARADISO package solves the algebraic systems of equations deriving from spatial and temporal discretization. It is notably successful in solving unsymmetrical sparse matrixes using an LU-based decomposition strategy. The average Nusselt number in the inner tube is determined to confirm whether the melting process is convection dominant or conduction dominant. The result shows that the trapezoidal-shaped cavity with an eccentricity of inner tube can enhance the melting fraction compared to the annular-shaped cavity with a central inner tube, annular-shaped cavity with an eccentric inner tube, and trapezoidal-shaped cavity with a central inner tube by 67%, 12%, and 40%, respectively. The results show that the shape of the cavity and proper positioning of the inner tube can influence the melting phenomenon and therefore improves the charging rate appreciably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(A_{\text{mush}}\) :

Mushy zone constant, (kg m3 s1)

c p :

Specific heat at constant pressure, (J kg1 K1)

D(T) :

Delta-Dirac function

\(\vec{F}_{\text b}\) :

Body force due to buoyancy, (kg m2 s2)

g :

Gravitational acceleration, (m s2)

H :

Heatlines function

k :

Thermal conductivity, (W m1 K1)

L f :

Latent heat of melting per unit mass (J kg1)

P :

Pressure, (Pa)

S(T) :

Damping factor

T :

Temperature, (K)

T m :

Melting temperature, (K)

T w :

Wall temperature, (K)

∆T :

Melting temperature range, (K)

t :

Time, (s)

\(\vec{u}\) :

Velocity term used in x-direction, (m s1)

\(\vec{v}\) :

Velocity term used in y-direction, (m s1)

β :

Thermal expansion coefficient, (K1)

µ :

Dynamic viscosity, (Pa.s)

ρ :

Density (kg m3)

φ :

Melting fraction

MF:

Melt fraction

Avg Nu:

Average Nusselt number

F.M.T:

Full melting time

References

  1. Prakash SA, Hariharan C, Arivazhagan R, Sheeja R, Raj VAA, Velraj R. Review on numerical algorithms for melting and solidification studies and their implementation in general purpose computational fluid dynamic software. J Energy Stor. 2021;36: 102341. https://doi.org/10.1016/j.est.2021.102341.

    Article  Google Scholar 

  2. Dardir M, Panchabikesan K, Haghighat F, El Mankibi M, Yuan Y. Opportunities and challenges of PCM-to-air heat exchangers (PAHXs) for building free cooling applications—A comprehensive review. J Energy Stor. 2019;22:157–75. https://doi.org/10.1016/j.est.2019.02.011.

    Article  Google Scholar 

  3. Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev. 2010;14(2):615–28. https://doi.org/10.1016/j.rser.2009.10.015.

    Article  CAS  Google Scholar 

  4. Medrano M, Yilmaz MO, Nogués M, Martorell I, Roca J, Cabeza LF. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Appl Energy. 2009;86(10):2047–55. https://doi.org/10.1016/j.apenergy.2009.01.014.

    Article  CAS  Google Scholar 

  5. Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: A review. Renew Sustain Energy Rev. 2009;13(9):2225–44. https://doi.org/10.1016/j.rser.2009.06.024.

    Article  CAS  Google Scholar 

  6. Zalba B, Marın JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83. https://doi.org/10.1016/S1359-4311(02)00192-8.

    Article  CAS  Google Scholar 

  7. Chiu JN, Martin V. Submerged finned heat exchanger latent heat storage design and its experimental verification. Appl Energy. 2012;93:507–16. https://doi.org/10.1016/j.apenergy.2011.12.019.

    Article  CAS  Google Scholar 

  8. Longeon M, Soupart A, Fourmigué JF, Bruch A, Marty P. Experimental and numerical study of annular PCM storage in the presence of natural convection. Appl Energy. 2013;112:175–84. https://doi.org/10.1016/j.apenergy.2013.06.007.

    Article  CAS  Google Scholar 

  9. Agyenim F, Eames P, Smyth M. Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renewable Energy. 2010;35(1):198–207. https://doi.org/10.1016/j.renene.2009.03.010.

    Article  CAS  Google Scholar 

  10. Zheng ZJ, Xu Y, Li MJ. Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance. Appl Energy. 2018;220:447–54. https://doi.org/10.1016/j.apenergy.2018.03.126.

    Article  Google Scholar 

  11. Seddegh S, Wang X, Henderson AD. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials. Appl Therm Eng. 2016;93:348–58. https://doi.org/10.1016/j.applthermaleng.2015.09.107.

    Article  Google Scholar 

  12. Li S, Sun Z, Xu B, Hong Y. Melting of phase change material from an isothermal vertical wall in a semi-enclosure. Int J Heat Mass Transfer. 2018;127:1041–52. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.101.

    Article  Google Scholar 

  13. Alnakeeb MA, Salam MAA, Hassab MA. Eccentricity optimization of an inner flat-tube double-pipe latent-heat thermal energy storage unit. Case Stud Therm Eng. 2021;25: 100969. https://doi.org/10.1016/j.csite.2021.100969.

    Article  Google Scholar 

  14. Chaichan MT, Kazem HA. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM). Case Stud Therm Eng. 2015;5:151–9. https://doi.org/10.1016/j.csite.2015.03.009.

    Article  Google Scholar 

  15. Sciacovelli A, Gagliardi F, Verda V. Maximization of performance of a PCM latent heat storage system with innovative fins. Appl Energy. 2015;137:707–15. https://doi.org/10.1016/j.apenergy.2014.07.015.

    Article  Google Scholar 

  16. Ye WB, Guo HJ, Huang SM, Hong YX. Research on melting and solidification processes for enhanced double tubes with constant wall temperature/wall heat flux. Heat Transfer Asian Res. 2018;47(3):583–99. https://doi.org/10.1002/htj.21328.

    Article  Google Scholar 

  17. Dhaidan NS, Khodadadi JM, Al-Hattab TA, Al-Mashat SM. Experimental and numerical investigation of melting of NePCM suspensions inside an annular container under a constant heat flux including the effect of eccentricity. Int J Heat Mass Transf. 2013;66:672–83. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.002.

    Article  CAS  Google Scholar 

  18. Chatterjee S, Bhanja D, Nath S. Numerical investigation of heat transfer and melting process of phase change material in trapezoidal cavities with different shapes and different heated tube positions. J Energy Stor. 2023;72(A):108285. https://doi.org/10.1016/j.est.2023.108285.

    Article  Google Scholar 

  19. Bhattacharjee P, Nath S, Bhanja D, Tamuli BR. A comparative study of melting behaviour of PCM in a square enclosure having rectangular fin and T-shaped fin, placed in vertical and horizontal direction: A numerical approach. J Mech Eng Sci, Part C. 2023. https://doi.org/10.1177/09544062231167760.

    Article  Google Scholar 

  20. Shokouhmand H, Kamkari B. Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Exp Thermal Fluid Sci. 2013;50:201–12. https://doi.org/10.1016/j.expthermflusci.2013.06.010.

    Article  CAS  Google Scholar 

  21. Zhang Y, Faghri A. Analysis of freezing in an eccentric annulus. J SolEnergy Eng. 1997;119(3):237–41. https://doi.org/10.1115/1.2888025.

    Article  Google Scholar 

  22. Yazıcı MY, Avcı M, Aydın O, Akgun M. Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: An experimental study. Sol Energy. 2014;101:291–8. https://doi.org/10.1016/j.solener.2014.01.007.

    Article  Google Scholar 

  23. Voller VR, Swaminathan CR, Thomas BG. Fixed grid techniques for phase change problems: A review. Int J Numer Meth Eng. 1990;30(4):875–98. https://doi.org/10.1002/nme.1620300419.

    Article  Google Scholar 

  24. Bouzennada T, Mechighel F, Ghachem K, Kolsi L. Numerical simulation of the impact of the heat source position on melting of a nano-enhanced phase change material. Nanomaterials. 2021;11(6):1425. https://doi.org/10.3390/nano11061425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duan J, Xiong Y, Yang D. Melting behavior of phase change material in honeycomb structures with different geometrical cores. Energies. 2019;12(15):2920. https://doi.org/10.3390/en12152920.

    Article  CAS  Google Scholar 

  26. Chaabane M, Mhiri H, Bournot P. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM). Energy Convers Manage. 2014;78:897–903. https://doi.org/10.1016/j.enconman.2013.07.089.

    Article  CAS  Google Scholar 

  27. Kadivar MR, Moghimi MA, Sapin P, Markides CN. Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store. Journal of Energy Storage. 2019;26: 101030. https://doi.org/10.1016/j.est.2019.101030.

    Article  Google Scholar 

  28. Pahamli Y, Hosseini MJ, Ranjbar AA, Bahrampoury R. Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers. Renew Energy. 2016;97:344–57. https://doi.org/10.1016/j.renene.2016.05.090.

    Article  CAS  Google Scholar 

  29. Sankar M, Reddy NK, Do Y. Conjugate buoyant convective transport of nanofluids in an enclosed annular geometry. Sci Rep. 2021;11(1):17122. https://doi.org/10.1038/s41598-021-96456-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sankar M, Park J, Do Y. Natural convection in a vertical annuli with discrete heat sources. Num Heat Transfer, Part A: Appl. 2011:59(8):594–615.https://doi.org/10.1080/10407782.2011.561110.

  31. Pushpa BV, Sankar M, Makinde OD. Optimization of thermosolutal convection in vertical porous annulus with a circular baffle. Therm Sci Eng Prog. 2020;20: 100735. https://doi.org/10.1016/j.tsep.2020.100735.

    Article  Google Scholar 

  32. Mahmaud J, Mousa F, Ali RDA, Abbas A. Lattice Boltzmann simulation of melting phenomenon with natural convection from an eccentric annulus. Therm Sci. 2013;17(3):877–90. https://doi.org/10.2298/TSCI110510012J.

    Article  Google Scholar 

  33. Dutta R, Atta A, Dutta TK. Experimental and numerical study of heat transfer in horizontal concentric annulus containing phase change material. Can J Chem Eng. 2008;86(4):700–10. https://doi.org/10.1002/cjce.20075.

    Article  CAS  Google Scholar 

  34. Yang X, Lu Z, Bai Q, Zhang Q, Jin L, Yan J. Thermal performance of a shell-and-tube latent heat thermal energy storage unit Role of annular fins. Appls Energy. 2017;202:558–70.

    Article  Google Scholar 

  35. Cao X, Yuan Y, Xiang B, Haghighat F. Effect of natural convection on melting performance of eccentric horizontal shell and tube latent heat storage unit. Sustain Cities Soc. 2018;38:571–81. https://doi.org/10.1016/j.scs.2018.01.025.

    Article  Google Scholar 

  36. Tamuli BR, Nath S, Bhanja D. Unveiling the melting phenomena of PCM in a latent heat thermal storage subjected to temperature fluctuating heat source. Int J Therm Sci. 2021;164: 106879. https://doi.org/10.1016/j.ijthermalsci.2021.106879.

    Article  Google Scholar 

  37. Rana S, Zunaid Md, Kumar R. CFD approach for the enhancement of thermal energy storage in phase change material charged heat exchanger. Case Stud Therm Eng. 2022;2022(33):101921.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by S.C. and Dr. D.B. The first draft of the three manuscripts was written by S.C., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dipankar Bhanja.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Bhanja, D. Maximization of performance of a PCM latent heat storage system with innovative cavity shape and optimum heating tube position. J Therm Anal Calorim 148, 12549–12564 (2023). https://doi.org/10.1007/s10973-023-12607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12607-1

Keywords

Navigation