Skip to main content
Log in

Investigation of tribo-thermal properties of inter-mixed AYSZ nanoceramic composite/SAE20W40 nanolubricant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Recently, inter-mixed alumina, zirconia, and yttria-based nanoceramic composites have been widely used for medical implants and thermal barrier coatings, including tribology applications, due to their high tribo-thermal, chemical, and structural phase stability. The present investigation deals with nanolubricant with hollow spherical inter-mixed alumina yttria-stabilized zirconia (AYSZ) nanoceramic composite as an additive. The AYSZ/SAE20W40 nanolubricant was prepared at two different mass percentages (0.22 and 0.33 mass% of NPs) using the ball milling method. The hollow spherical AYSZ nanocomposite particles were broken into nanopot pieces due to impact and frictional forces between the ceramic balls during the attrition process. The broken pot-like AYSZ nanopieces in nanolubricant showed good dispersive stability due to the increased surface area. The prepared AYSZ/SAE20W40 nanolubricant samples were investigated for their tribological properties, such as frictional coefficient, frictional force, wear, and specimen mass loss, including thermal conductivity. The results for nanolubricant with 0.33 mass% of AYSZ samples showed better wear reduction (106.10%) and thermal conductivity (1.38%) than 0.22 mass% and SAE20W40 engine oil. Hence, the AYSZ nanoceramic was proven as a nanoadditive for lubricant tribo-thermal application by reducing the boundary lubrication wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ali Erdemir KH. Global impact of friction on energy consumption. Econ Environ FME Trans. 2015;43:181–5. https://doi.org/10.5937/fmet1503181H.

    Article  Google Scholar 

  2. Pownraj C, Valan Arasu A. Effect of dispersing single and hybrid nanoparticles on tribological, thermo-physical, and stability characteristics of lubricants: a review. J Therm Anal Calorim. 2021;143:1773–809. https://doi.org/10.1007/s10973-020-09837-y.

    Article  CAS  Google Scholar 

  3. Cai M, Guo R, Zhou F, Liu W. Lubricating a Bright Future: Lubrication Contribution to Energy Saving and Low Carbon Emission. Sci China Technol Sci. 2013;56:2888–913. https://doi.org/10.1007/s11431-013-5403-2.

    Article  CAS  Google Scholar 

  4. C. Pownraj.; A.Valan Arasu. Comprehensive Investigation on Wear and Thermo-Physical Properties of Bio-Char/SAE20W40 Nanolubricant. Biomass Conv. Bioref. 2022, doi:https://doi.org/10.1007/s13399-021-02157-7.

  5. Shahnazar S, Bagheri S, Abd Hamid SB. Enhancing lubricant properties by nanoparticle additives. Int J Hydrog Energy. 2016;41:3153–70. https://doi.org/10.1016/j.ijhydene.2015.12.040.

    Article  CAS  Google Scholar 

  6. Dai W, Kheireddin B, Gao H, Liang H. Roles of nanoparticles in oil lubrication. Tribol Int. 2016;102:88–98. https://doi.org/10.1016/j.triboint.2016.05.020.

    Article  CAS  Google Scholar 

  7. Pownraj C, Valan Arasu A. Preparation and characterization of low-cost eco-friendly GAO grafted bio-carbon nanoparticle additive for enhancing the lubricant performance. Diam Related Mater. 2020;108:107921. https://doi.org/10.1016/j.diamond.2020.107921.

    Article  CAS  Google Scholar 

  8. Shafi WK, Charoo MS. An overall review on the tribological, thermal and rheological properties of nanolubricants. Tribol - Mater, Surf Interfaces. 2021;15:20–54. https://doi.org/10.1080/17515831.2020.1785233.

    Article  CAS  Google Scholar 

  9. Kotia A, Rajkhowa P, Rao GS, Ghosh SK. Thermophysical and tribological properties of nanolubricants: a review. Heat Mass Transf. 2018;54:3493–508. https://doi.org/10.1007/s00231-018-2351-1.

    Article  Google Scholar 

  10. Mishra NK, Alharbi KA, Rahman K, Eldin SM, Bani-Fwaz MZ. Investigation of improved heat transport featuring in dissipative ternary nanofluid over a stretched wavy cylinder under thermal slip. Case Stud Thermal Eng. 2023;48:103130. https://doi.org/10.1016/j.csite.2023.103130.

    Article  Google Scholar 

  11. Abbas W, Eldin SM, Bani-Fwaz MZ. Numerical investigation of non-transient comparative heat transport mechanism in ternary nanofluid under various physical constraints. MATH. 2023;8:15932–49. https://doi.org/10.3934/math.2023813.

    Article  Google Scholar 

  12. Al-Zahrani AA, Adnan MI, Rahman K, Bani-Fwaz MZ, Tag-Eldin E. Analytical study of (Ag–Graphene)/blood hybrid nanofluid influenced by (Platelets-Cylindrical) nanoparticles and joule heating via VIM. ACS Omega. 2023;8:19926–38. https://doi.org/10.1021/acsomega.3c01903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Albaidani MM, Mishra NK, Ahmad Z, Eldin SM, Haq EU. Numerical study of thermal enhancement in ZnO-sae50 nanolubricant over a spherical magnetized surface influenced by newtonian heating and thermal radiation. Case Stud Thermal Eng. 2023;45:102917. https://doi.org/10.1016/j.csite.2023.102917.

    Article  Google Scholar 

  14. Adnan Heat Transfer Inspection in [(ZnO-MWCNTs)/Water-EG (5050)] Hnf with Thermal Radiation Ray and Convective Condition over a Riga Surface. Waves in Random and Complex Media. 2022. doi:https://doi.org/10.1080/17455030.2022.2119300.

  15. Ahmed Ali MK, Xianjun H, Turkson RF, Peng Z, Chen X. Enhancing the thermophysical properties and tribological behaviour of engine oils using nano-lubricant additives. RSC Adv. 2016;6:77913–24. https://doi.org/10.1039/C6RA10543B.

    Article  CAS  Google Scholar 

  16. Nabil MF, Azmi WH, Hamid KA, Zawawi NNM, Priyandoko G, Mamat R. Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: a comprehensive review on performance. Int Commun Heat Mass Transfer. 2017;83:30–9. https://doi.org/10.1016/j.icheatmasstransfer.2017.03.008.

    Article  CAS  Google Scholar 

  17. Jason YJJ, How HG, Teoh YH, Chuah HG. A study on the tribological performance of nanolubricants. Processes. 2020;8:1372. https://doi.org/10.3390/pr8111372.

    Article  CAS  Google Scholar 

  18. Karthik A, Srither SR, Dhineshbabu NR, Lenin N, Arunmetha S, Manivasakan P, Rajendran V. Stabilization of tetragonal zirconia in alumina-zirconia and alumina-yttria stabilized zirconia nanocomposites: a comparative structural analysis. Mater Charact. 2019;158:109964. https://doi.org/10.1016/j.matchar.2019.109964.

    Article  CAS  Google Scholar 

  19. Kotia A, Ghosh GK, Srivastava I, Deval P, Ghosh SK. Mechanism for improvement of friction/wear by using Al2O3 and SiO2/gear oil nanolubricants. J Alloy Compd. 2019;782:592–9. https://doi.org/10.1016/j.jallcom.2018.12.215.

    Article  CAS  Google Scholar 

  20. Tóth ÁD, Szabó ÁI, Kuti R. Tribological properties of nano-sized ZrO2 ceramic particles in automotive lubricants. FME Trans. 2021;49:36–43. https://doi.org/10.5937/fme2101036T.

    Article  Google Scholar 

  21. Rylski A, Siczek K. The effect of addition of nanoparticles, especially ZrO2-based, on tribological behavior of lubricants. Lubricants. 2020;8:23. https://doi.org/10.3390/lubricants8030023.

    Article  Google Scholar 

  22. Birleanu C, Pustan M, Cioaza M, Molea A, Popa F, Contiu G. Effect of TiO2 nanoparticles on the tribological properties of lubricating oil: an experimental investigation. Sci Rep. 2022;12:5201. https://doi.org/10.1038/s41598-022-09245-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tóth ÁD, Szabó ÁI, Leskó MZ, Rohde-Brandenburger J, Kuti R. Tribological properties of the nanoscale spherical Y2O3 particles as lubricant additives in automotive application. Lubricants. 2022. https://doi.org/10.3390/lubricants10020028.

    Article  Google Scholar 

  24. Xie H, Jiang B, Hu X, Peng C, Guo H, Pan F. Synergistic effect of MoS2 and SiO2 nanoparticles as lubricant additives for magnesium alloy-steel contacts. Nanomaterials. 2022;7:154. https://doi.org/10.3390/nano12142364.

    Article  Google Scholar 

  25. Ganapathy Pandian, S. Tribological characteristics of Yttria stabilized zirconia Nanolubricants. October 13 2014. pp. 2014–01–2790.

  26. Omrani E, Siddaiah A, Moghadam AD, Garg U, Rohatgi P, Menezes PL. Ball milled graphene nano additives for enhancing sliding contact in vegetable oil. Nanomaterials. 2021;11:610. https://doi.org/10.3390/nano11030610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zin V, Barison S, Agresti F, Colla L, Pagura C, Fabrizio M. Improved tribological and thermal properties of lubricants by graphene based nano-additives. RSC Adv. 2016;6:59477–86. https://doi.org/10.1039/C6RA12029F.

    Article  CAS  Google Scholar 

  28. Jiao D, Zheng S, Wang Y, Guan R, Cao B. The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci. 2011;257:5720–5. https://doi.org/10.1016/j.apsusc.2011.01.084.

    Article  CAS  Google Scholar 

  29. Yang R, Chen G, Dresselhaus MS. thermal conductivity of core–shell nanostructures: from nanowires to nanocomposites. In: Proceedings of the Heat Transfer: Volume 4; ASMEDC: San Francisco, California, USA, January 1 2005; pp. 895–901.

  30. Mamand SM. Thermal conductivity calculations for nanoparticles embedded in a base fluid. Appl Sci. 2021;11:1459. https://doi.org/10.3390/app11041459.

    Article  CAS  Google Scholar 

  31. Neidhart SM, Gezelter JD. Thermal transport is influenced by nanoparticle morphology: a molecular dynamics study. J Phys Chem C. 2018;122:1430–6. https://doi.org/10.1021/acs.jpcc.7b12362.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the almighty Dr M. Duraiselvam (NITT), Dr S. Suresh (NITT) and Dr. S. Saravana Perumaal (NITTTR) for providing us with equipment for measuring tribological, thermal conductivity and USB.2.0 surface analysing camera.

Author information

Authors and Affiliations

Authors

Contributions

CP: Conceptualization, Writing and Original draft preparation; AK: Methodology and Editing; SS: Formal analysis and Investigation; JKK: Review and Editing: AVA: Validation and Supervision.

Corresponding authors

Correspondence to A. Karthik, A. Valan Arasu or Jitendra Kumar Katiyar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pownraj, C., Karthik, A., Suresh, S. et al. Investigation of tribo-thermal properties of inter-mixed AYSZ nanoceramic composite/SAE20W40 nanolubricant. J Therm Anal Calorim 148, 12411–12420 (2023). https://doi.org/10.1007/s10973-023-12606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12606-2

Keywords

Navigation