Skip to main content
Log in

Single- and combined-source typical metrological year solar energy data modelling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Prediction of solar energy data is very crucial for the effective utilization of freely available renewable energy abundantly in nature. Solar energy data are widely available which must be carefully prepared and arranged for modelling. In this work, typical meteorological year (TMY) data made available by the Korea institute of energy research (KIER) and the National renewable energy laboratory (NREL) are used for modelling in different phases. TMY data at single-point location and multiple locations from KIER are initially used for training of machine learning (ML) algorithms. Later, the TMY data from NREL and KIER are combined and then modelled using radius nearest neighbour (RNN), decision tree regressor (DTR), random forest regressor (RFR), and X-gradient boosting (XGB) algorithms. The solar energy parameters modelled in this work are dew point temperature (DPT), dry bulb temperature (DBT), relative humidity (RH), surface pressure (SP), windspeed (WS), and solar insolation of horizontal plane (IHP). Quantitative analysis of the algorithms is also performed in each stage of the work. The modelling indicates that the DBT, DPT, RH, and SP are able to be predicted with a minimum accuracy of over 90% in each stage. The WS and IHP data when modelled from a single-source TMY data provide superior accuracy than when they are combined. RFR and XGB have outperformed overall as they provide good accuracy for WS and IHP data as well. RNN and DTR achieved 100% accuracy in training, while RFR and XGB showed slightly lower training accuracy due to their avoidance of overfitting. There are errors in testing for RNN/DTR. Using RNN/DTR, the training errors are 0% in all cases, while in some cases like DTP the error by RFR/XGB up to 3%, whereas RNN/DTR testing errors go up to 5% and in case of RFR/XGB they are up to 7.5%. For RH modelling RFR/XGB, training errors are max 6%. RNN/DTR testing errors go up to 11%, while for RFR/XGB up to 7.5% which indicates their robustness. It is observed that many solar parameters, when combined with different source data, can be predicted easily with good accuracy, while WS and IHP become a little bit challenging to model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Malik P, Gehlot A, Singh R, Gupta LR, Thakur AK. A review on ANN based model for solar radiation and wind speed prediction with real-time data. Arch Comput Methods Eng. 2022;29:3183–201. https://doi.org/10.1007/s11831-021-09687-3.

    Article  Google Scholar 

  2. Sudharshan K, Naveen C, Vishnuram P, KrishnaRao Kasagani DVS, Nastasi B. Systematic review on impact of different irradiance forecasting techniques for solar energy prediction. Energies. 2022;15:6267. https://doi.org/10.3390/en15176267.

    Article  Google Scholar 

  3. Prema V, Bhaskar MS, Almakhles D, Gowtham N, Rao KU. Critical review of data, models and performance metrics for wind and solar power forecast. IEEE Access. 2022;10:667–88. https://doi.org/10.1109/ACCESS.2021.3137419.

    Article  Google Scholar 

  4. Soleimani B, Keshavarz A. Heat transfer enhancement of an internal subcooled flow boiling over a hot spot. Appl Therm Eng. 2016;99:206–13. https://doi.org/10.1016/j.applthermaleng.2015.12.043.

    Article  CAS  Google Scholar 

  5. Garud KS, Jayaraj S, Lee MY. A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models. Int J Energy Res. 2021;45:6–35. https://doi.org/10.1002/er.5608.

    Article  Google Scholar 

  6. Bayrakçı HC, Demircan C, Keçebaş A. The development of empirical models for estimating global solar radiation on horizontal surface: a case study. Renew Sustain Energy Rev. 2018;81:2771–82. https://doi.org/10.1016/j.rser.2017.06.082.

    Article  Google Scholar 

  7. Liu Y, Zhou Y, Chen Y, Wang D, Wang Y, Zhu Y. Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: a case study in China. Renew Energy. 2020;146:1101–12. https://doi.org/10.1016/j.renene.2019.07.053.

    Article  Google Scholar 

  8. Fan J, Wang X, Wu L, Zhang F, Bai H, Lu X, Xiang Y. New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: a case study in South China. Energy Convers Manag. 2018;156:618–25. https://doi.org/10.1016/j.enconman.2017.11.085.

    Article  Google Scholar 

  9. Koo C, Li W, Cha SH, Zhang S. A novel estimation approach for the solar radiation potential with its complex spatial pattern via machine-learning techniques. Renew Energy. 2019;133:575–92. https://doi.org/10.1016/j.renene.2018.10.066.

    Article  Google Scholar 

  10. Mccandless TC, Haupt SE, Young GS. A regime-dependent arti fi cial neural network technique for short-range solar irradiance forecasting. Renew Energy. 2016;89:351–9. https://doi.org/10.1016/j.renene.2015.12.030.

    Article  Google Scholar 

  11. Olatomiwa L, Mekhilef S, Shamshirband S, Petković D. Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria. Renew Sustain Energy Rev. 2015;51:1784–91. https://doi.org/10.1016/j.rser.2015.05.068.

    Article  Google Scholar 

  12. Quej VH, Almorox J, Arnaldo JA, Saito L. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment. J Atmos Solar Terr Phys. 2017;155:62–70. https://doi.org/10.1016/j.jastp.2017.02.002.

    Article  Google Scholar 

  13. Marzo A, Trigo M, Alonso-Montesinos J, Martínez-Durbán M, López G, Ferrada P, Fuentealba E, Cortés M, Batlles FJ. Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. Renew Energy. 2017;113:303–11. https://doi.org/10.1016/j.renene.2017.01.061.

    Article  Google Scholar 

  14. Mehdizadeh S, Behmanesh J, Khalili K. Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation. J Atmos Solar-Terrestrial Phys. 2016;146:215–27. https://doi.org/10.1016/j.jastp.2016.06.006.

    Article  Google Scholar 

  15. Azimi R, Ghayekhloo M, Ghofrani M. A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting. ENERGY Convers Manag. 2016;118:331–44. https://doi.org/10.1016/j.enconman.2016.04.009.

    Article  Google Scholar 

  16. Anwar I, Khatib T. A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm. Energy Convers Manag. 2017;138:413–25. https://doi.org/10.1016/j.enconman.2017.02.006.

    Article  Google Scholar 

  17. Jiang H. A novel approach for forecasting global horizontal irradiance based on sparse quadratic RBF neural network. Energy Convers Manag. 2017;152:266–80. https://doi.org/10.1016/j.enconman.2017.09.043.

    Article  Google Scholar 

  18. Heng SY, Ridwan WM, Kumar P, Ahmed AN, Fai CM, Birima AH, El-Shafie A. Artificial neural network model with different backpropagation algorithms and meteorological data for solar radiation prediction. Sci Rep. 2022;12:1–18. https://doi.org/10.1038/s41598-022-13532-3.

    Article  CAS  Google Scholar 

  19. Geetha A, Santhakumar J, Sundaram KM, Usha S. ScienceDirect prediction of hourly solar radiation in Tamil Nadu using ANN Model with different learning algorithms. Energy Rep. 2022;8:664–71. https://doi.org/10.1016/j.egyr.2021.11.190.

    Article  Google Scholar 

  20. Ghazvinian H, Mousavi S, Karami H, Farzin S, Ehteram M, Hossain S, Fai CM, Bin HH, Singh P, Ros FC, et al. Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction. PLoS ONE. 2019;14:e0217634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hussain S, AlAlili A. A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks. Appl Energy. 2017;208:540–50. https://doi.org/10.1016/j.apenergy.2017.09.100.

    Article  Google Scholar 

  22. Rao DVSKK, Premalatha M, Naveen C. Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: a case study. Renew Sustain Energy Rev. 2018;91:248–58. https://doi.org/10.1016/j.rser.2018.03.096.

    Article  Google Scholar 

  23. Xiong G, Li L, Mohamed AW, Yuan X, Zhang J. A new method for parameter extraction of solar photovoltaic models using gaining-sharing knowledge based algorithm. Energy Rep. 2021;7:3286–301. https://doi.org/10.1016/j.egyr.2021.05.030.

    Article  Google Scholar 

  24. Gao X, Cui Y, Hu J, Xu G, Wang Z, Qu J, Wang H. Parameter extraction of solar cell models using improved shuffled complex evolution algorithm. Energy Convers Manag. 2018;157:460–79. https://doi.org/10.1016/j.enconman.2017.12.033.

    Article  Google Scholar 

  25. Bendiek P, Taha A, Abbasi QH, Barakat B. Solar irradiance forecasting using a data-driven algorithm and contextual optimisation. Appl Sci. 2022. https://doi.org/10.3390/app12010134.

    Article  Google Scholar 

  26. Khosravi A, Koury RNN, Machado L, Pabon JJG. Prediction of hourly solar radiation in abu musa island using machine learning algorithms. J Clean Prod. 2018;176:63–75. https://doi.org/10.1016/j.jclepro.2017.12.065.

    Article  Google Scholar 

  27. Ağbulut Ü, Gürel AE, Biçen Y. Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison. Renew Sustain Energy Rev. 2021. https://doi.org/10.1016/j.rser.2020.110114.

    Article  Google Scholar 

  28. Patel D, Patel S, Patel P, Shah M. Solar radiation and solar energy estimation using ANN and Fuzzy logic concept: A comprehensive and systematic study. Environ Sci Pollut Res. 2022;29(22):32428–42.

    Article  Google Scholar 

  29. Meenal R, Selvakumar AI. Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renew Energy. 2018;121:324–43. https://doi.org/10.1016/j.renene.2017.12.005.

    Article  Google Scholar 

  30. Wang Z, Li Y, Li D, Zhu Z, Du W. Entropy and gravitation based dynamic radius nearest neighbor classification for imbalanced problem. Knowl Based Syst. 2020;193: 105474. https://doi.org/10.1016/j.knosys.2020.105474.

    Article  Google Scholar 

  31. Jin Z, Shang J, Zhu Q, Ling C, Xie W, Qiang B. RFRSF: employee turnover prediction based on random forests and survival analysis. Lect Notes Comput Sci. 2020. https://doi.org/10.1007/978-3-030-62008-0_35.

    Article  Google Scholar 

  32. Santhanam R, Uzir N, Raman S, Banerjee S. Experimenting XGBoost algorithm for prediction and classi Fi cation of different datasets. Int J Control Theory Appl. 2017;9:651–62.

    Google Scholar 

  33. Gouda SG, Hussein Z, Luo S, Yuan Q. Model selection for accurate daily global solar radiation prediction in China. J Clean Prod. 2019;221:132–44. https://doi.org/10.1016/j.jclepro.2019.02.211.

    Article  Google Scholar 

  34. Zang H, Cheng L, Ding T, Cheung KW, Wang M, Wei Z, Sun G. Application of functional deep belief network for estimating daily global solar radiation: a case study in China. Energy. 2020;191: 116502. https://doi.org/10.1016/j.energy.2019.116502.

    Article  Google Scholar 

  35. Sharma P, Said Z, Kumar A, Nizetic S, Pandey A, Hoang AT, Huang Z, Afzal A, Li C, Le AT, Nguyen XP. Recent advances in machine learning research for nanofluid-based heat transfer in renewable energy system. Energy Fuels. 2022;36(13):6626–58.

    Article  CAS  Google Scholar 

  36. Farooq S, Rativa D, Said Z, de Araujo RE. High performance blended nanofluid based on gold nanorods chain for harvesting solar radiation. Appl Therm Eng. 2023;5(218): 119212.

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted with the support of the National Research Foundation of Korea (NRF- 2021R1C1C1008791).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asif Afzal or Sung Goon Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Buradi, A., Alwetaishi, M. et al. Single- and combined-source typical metrological year solar energy data modelling. J Therm Anal Calorim 148, 12501–12523 (2023). https://doi.org/10.1007/s10973-023-12604-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12604-4

Keywords

Navigation