Skip to main content
Log in

Preparation of a novel flame retardant based on phosphorus/nitrogen modified lignin with metal–organic framework and its application in epoxy resin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To reduce the fire risk of epoxy (EP) resin, a renewable lignin-based flame retardant functionalized with a metal–organic framework (MOF) HKUST-1 (Cu3(BTC)2, BTC = benzene-1,3,5-tricarboxylate) was prepared by a facile and green method. The chemical structure of flame retardant was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that HKUST-1 was in-situ grown on the surface of phosphorus/nitrogen modified lignin, which was treated as an efficient flame retardant (termed PN-lignin@HKUST-1) for subsequent EP resin. The flame-retardant properties of EP composites were evaluated by the limiting oxygen index (LOI), vertical burning (UL-94), and cone calorimetry tests. As compared with neat EP thermoset, the presence of 15 mass% PN-lignin@HKUST-1 increased the LOI value from 28.5 to 33.2% and upgraded the UL-94 rating from V-2 to V-0. Besides, the peak heat release rate (PHRR) and total heat release (THR) were reduced by 41.2 and 33.8%, respectively. Observations of char residues could indicate that addition of PN-lignin@HKUST-1 contributes to a compact and dense char layer, which blocks the release and transfer of heat and harmful gases during combustion.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data supporting the findings of this research are authentic and available in this article.

References

  1. Auvergne R, Caillol S, David G, Boutevin B, Pascault JP. Biobased thermosetting epoxy: present and future. Chem Rev. 2014;114(2):1082–115. https://doi.org/10.1021/cr3001274.

    Article  CAS  PubMed  Google Scholar 

  2. Gu H, Ma C, Gu J, Guo J, Yan X, Huang J, Zhang Q, Guo Z. An overview of multifunctional epoxy nanocomposites. J Mater Chem C. 2016;4:5890–906. https://doi.org/10.1039/C6TC01210H.

    Article  CAS  Google Scholar 

  3. Jian XY, He Y, Li YD, Wang M, Zeng JB. Curing of epoxidized soybean oil with crystalline oligomeric poly(butylene succinate) towards high performance and sustainable epoxy resins. Chem Eng J. 2017;326:875–85. https://doi.org/10.1016/j.cej.2017.06.039.

    Article  CAS  Google Scholar 

  4. Wan JT, Bu ZY, Xu CJ, Li BG, Fan H. Preparation, curing kinetics, and properties of a novel low-volatile starlike aliphatic-polyamine curing agent for epoxy resins. Chem Eng J. 2011;171(1):357–67. https://doi.org/10.1016/j.cej.2011.04.004.

    Article  CAS  Google Scholar 

  5. Raquez JM, Deléglise M, Lacrampe MF, Krawczak P. Thermosetting (bio) materials derived from renewable resources: a critical review. Prog Polym Sci. 2010;35(4):487–509. https://doi.org/10.1016/j.progpolymsci.2010.01.001.

    Article  CAS  Google Scholar 

  6. Chen ZK, Yang G, Yang JP, Fu SY, Ye L, Huang YG. Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether. Polymer. 2009;50(5):1316–23. https://doi.org/10.1016/j.polymer.2008.12.048.

    Article  CAS  Google Scholar 

  7. Wang X, Song L, Xing WY, Lu HD, Hu Y. A effective flame retardant for epoxy resins based on poly(DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate). Mater Chem Phys. 2011;125(3):536–41. https://doi.org/10.1016/j.matchemphys.2010.10.020.

    Article  CAS  Google Scholar 

  8. Zhang JH, Mi XQ, Chen SY, Xu ZJ, Zhang DH, Miao MH, Wang JS. A bio-based hyperbranched flame retardant for epoxy resins. Chem Eng J. 2020;381:122719. https://doi.org/10.1016/j.cej.2019.122719.

    Article  CAS  Google Scholar 

  9. Levchik SV, Weil ED. A review of recent progress in phosphorus-based flame retardants. J Fire Sci. 2006;24(5):345–64. https://doi.org/10.1177/0734904106068426.

    Article  CAS  Google Scholar 

  10. Song PA, Cao ZH, Fu SY, Fang ZP, Wu Q, Ye JW. Thermal degradation and flame retardancy properties of ABS/lignin: Effects of lignin content and reactive compatibilization. Polym Degrad Stab. 2016;518(1–2):59–65. https://doi.org/10.1016/j.tca.2011.02.007.

    Article  CAS  Google Scholar 

  11. Cao L, Iris KM, Liu Y, Ruan X, Tsang DC, Hunt AJ, Zhang S. Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour Technol. 2018;269:465–75. https://doi.org/10.1016/j.biortech.2018.08.065.

    Article  CAS  PubMed  Google Scholar 

  12. Hu J, Xiao R, Shen DK, Zhang HY. Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy. Bioresour Technol. 2013;128:633–9. https://doi.org/10.1016/j.biortech.2012.10.148.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar A, Kumar A, Kumar J, Bhaskar T. Catalytic pyrolysis of soda lignin over zeolites using pyrolysis gas chromatography-mass spectrometry. Bioresour Technol. 2019;291:121822. https://doi.org/10.1016/j.biortech.2019.121822.

    Article  CAS  PubMed  Google Scholar 

  14. Pandey MP, Kim CS. Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol. 2011;34(1):29–41. https://doi.org/10.1002/ceat.201000270.

    Article  CAS  Google Scholar 

  15. Li B, Zhang XC, Su RZ. An investigation of thermal degradation and charring of larch lignin in the condensed phase: the effects of boric acid, guanyl urea phosphate, ammonium dihydrogen phosphate and ammonium polyphosphate. Polym Degrad Stab. 2002;75(1):35–44. https://doi.org/10.1016/S0141-3910(01)00202-6.

    Article  CAS  Google Scholar 

  16. Ferry L, Dorez G, Taguet A, Otazaghine B, Lopez-Cuesta JM. Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate. Polym Degrad Stab. 2015;113:135–43. https://doi.org/10.1016/j.polymdegradstab.2014.12.015.

    Article  CAS  Google Scholar 

  17. Yu YM, Fu SY, Song PA, Luo XP, Jin YM, Lu FZ, Wu Q, Ye JW. Functionalized lignin by grafting phosphorusnitrogen improves the thermal stability and flame retardancy of polypropylene. Polym Degrad Stab. 2012;97(4):541–6. https://doi.org/10.1016/j.polymdegradstab.2012.01.020.

    Article  CAS  Google Scholar 

  18. Sandra GF, Martin G, Bernhard S, Corcuera MA, Arantxa E. Impact of the combined use of layered double hydroxides, lignin and phosphorous polyol on the fire behavior of flexible polyurethane foams. Ind Crop Prod. 2018;125:346–59. https://doi.org/10.1016/j.indcrop.2018.09.018.

    Article  CAS  Google Scholar 

  19. Wu W, He HB, Liu T, Wei RC, Cao XW, Sun QJ, Venkatesh S, Yuen RKK, Roy VAL, Li RKY. Synergetic enhancement on flame retardancy by melamine phosphate modified lignin in rice husk ash filled P34HB biocomposites. Compos Sci Technol. 2018;168:246–54. https://doi.org/10.1016/j.compscitech.2018.09.024.

    Article  CAS  Google Scholar 

  20. Lu X, Guo H, Que H, Wang D, Liang D, He T, Robin HM, Xu C, Zhang X, Gu X. Pyrolysis mechanism and kinetics of high-performance modified lignin-based epoxy resins. J Anal Appl Pyrolysis. 2021;154: 105013. https://doi.org/10.1016/j.jaap.2020.105013.

    Article  CAS  Google Scholar 

  21. Jian RK, Ai YF, Xia L, Zhao LJ, Zhao HB. Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins. J Hazard Mater. 2019;371:529–39. https://doi.org/10.1016/j.jhazmat.2019.03.045.

    Article  CAS  PubMed  Google Scholar 

  22. Khanal S, Zhang W, Ahmed S, Ali M, Xu S. Effects of intumescent flame retardant system consisting of tris (2-hydroxyethyl) isocyanurate and ammonium polyphosphate on the flame retardant properties of high-density polyethylene composites. Compos A Appl Sci Manufac. 2018;112:444–51. https://doi.org/10.1016/j.compositesa.2018.06.030.

    Article  CAS  Google Scholar 

  23. Feng YZ, Li XW, Zhao XY, Ye YS, Zhou XP, Liu H, Liu CT, Xie XL. Synergetic improvement in thermal conductivity and flame retardancy of epoxy/silver nanowires composites by incorporating “branch-like” flame-retardant functionalized grapheme. ACS Appl Mater Inter. 2018;10(25):21628–41. https://doi.org/10.1021/acsami.8b05221.

    Article  CAS  Google Scholar 

  24. Qiu Y, Qian LJ, Feng HS, Jin SL, Hao JW. Toughening effect and flame-retardant behaviors of phosphaphenanthrene/phenylsiloxane bigroup macromolecules in epoxy thermoset. Macromolecules. 2018;51(23):9992–10002. https://doi.org/10.1021/acs.macromol.8b02090.

    Article  CAS  Google Scholar 

  25. Zhang Y, Yu B, Wang BB, Liew KM, Song L, Wang CM, Hu Y. Highly effective P-P synergy of a novel DOPO-based flame retardant for epoxy resin. Ind Eng Chem Res. 2017;56(5):1245–55. https://doi.org/10.1021/acs.iecr.6b04292.

    Article  CAS  Google Scholar 

  26. Jian RK, Wang P, Duan WS, Wang JS, Zheng XL, Weng JB. Synthesis of a novel P/N/S- containing flame retardant and its application in epoxy resin: thermal property, flame retardance, and pyrolysis behavior. Ind Eng Chem Res. 2016;55:11520–7. https://doi.org/10.1021/acs.iecr.6b03416.

    Article  CAS  Google Scholar 

  27. Wang J, Ma C, Wang P, Qiu S, Cai W, Hu Y. Ultra-low phosphorus loading to achieve the superior flame retardancy of epoxy resin. Polym Degrad Stab. 2018;149:119–28. https://doi.org/10.1016/j.polymdegradstab.2018.01.024.

    Article  CAS  Google Scholar 

  28. Lu X, Zhu X, Dai P, Robin HM, Guo H, Que H, Wang D, Liang D, He T, Xu C, Luo Z, Gu X. Thermal performance and thermal decomposition kinetics of a novel lignin-based epoxy resin containing phosphorus and nitrogen elements. J Therm Anal Calorim. 2022;147:5237–53. https://doi.org/10.1007/s10973-021-10950-9.

    Article  CAS  Google Scholar 

  29. Zhang Y, Zhang S, Chung TS. Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ Sci Technol. 2015;49(16):10235–42. https://doi.org/10.1021/acs.est.5b02086.

    Article  CAS  PubMed  Google Scholar 

  30. Han Y, Jiang Y, Gao C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl Mater Inter. 2015;7(15):8147–55. https://doi.org/10.1021/acsami.5b00986.

    Article  CAS  Google Scholar 

  31. Janakiram S, Espejo JLM, Yu X, Ansaloni L, Deng L. Facilitated transport membranes containing graphene oxide-based nanoplatelets for CO2 separation: effect of 2D filler properties. J Membrane Sci. 2020;616:118626. https://doi.org/10.1016/j.memsci.2020.118626.

    Article  CAS  Google Scholar 

  32. Li ZQ, Li CX, Ge XL, Ma JY, Zhang ZW, Li Q, Wang CX, Yin LW. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy. 2016;23:15–26. https://doi.org/10.1016/j.nanoen.2016.02.049.

    Article  CAS  Google Scholar 

  33. Chae HK, Siberio-Pérez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM. A route to high surface area porosity and inclusion of large molecules in crystals. Nature. 2004;427:523–7. https://doi.org/10.1038/nature02311.

    Article  CAS  PubMed  Google Scholar 

  34. Rieter WJ, Taylor KML, An H, Lin W, Lin W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc. 2006;128(28):9024–5. https://doi.org/10.1021/ja0627444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kesanli B, Lin W. Chiral porous coordination networks: rational design and applications in enantioselective processes. Coord Chem Rev. 2003;246(1–2):305–26. https://doi.org/10.1016/j.cct.2003.08.004.

    Article  CAS  Google Scholar 

  36. Cui XF, Sun XD, Liu L, Huang QH, Yang HC, Chen CJ, Nie SX, Zhao ZX, Zhao ZX. In-situ fabrication of cellulose foam HKUST-1 and surface modification with polysaccharides for enhanced selective adsorption of toluene and acidic dipeptides. Chem Eng J. 2019;369:898–907. https://doi.org/10.1016/j.cej.2019.03.129.

    Article  CAS  Google Scholar 

  37. Liu LN, Qian MB, Song PA, Huang GB, Yu YM, Fu SY. Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustain Chem Eng. 2016;4(4):2422–31. https://doi.org/10.1021/acssuschemeng.6b00112.

    Article  CAS  Google Scholar 

  38. Back S, Lim J, Kim N, Kim Y, Jung Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem Sci. 2017;8:1090–6. https://doi.org/10.1039/C6SC03911A.

    Article  CAS  PubMed  Google Scholar 

  39. Gaan S, Liang S, Mispreuve H, Perler H, Naescher R, Neisius M. Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym Degrad Stab. 2015;113:180–8. https://doi.org/10.1016/j.polymdegradstab.2015.01.007.

    Article  CAS  Google Scholar 

  40. Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer. 2010;51(11):2435–45. https://doi.org/10.1016/j.polymer.2010.03.053.

    Article  CAS  Google Scholar 

  41. Wang B, Yang X, Qiao C, Li Y, Li T, Xu C. Effects of chitosan quaternary ammonium salt on the physicochemical properties of sodium carboxymethyl cellulosebased films. Carbohyd Polym. 2018;184:37–46. https://doi.org/10.1016/j.carbpol.2017.12.030.

    Article  CAS  Google Scholar 

  42. Liu Q, Jin L, Sun W. Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology. Chem Commun. 2012;48(70):8814–6. https://doi.org/10.1039/C2CC34192A.

    Article  CAS  Google Scholar 

  43. Dai XQ, Hang YH, Zhao X, Sun C, Ju LN, Gui XJ, Sun S, Xu YB, Wang YR, Li YF. ZIF-8 as an adsorbent of aqueous phase for Eu and Tb ions. Micro Nano Lett. 2017;12(3):187–90. https://doi.org/10.1049/mnl.2016.0674.

    Article  CAS  Google Scholar 

  44. Dong L, Jiao F, Qin W, Zhu H, Jia W. New insights into the carboxymethyl cellulose adsorption on scheelite and calcite: adsorption mechanism, AFM imaging and adsorption model. Appl Surf Sci. 2019;463:105–14. https://doi.org/10.1016/j.apsusc.2018.08.192.

    Article  CAS  Google Scholar 

  45. Perret B, Schartel B, Stöß K, Ciesielski M, Diederichs J, Döring M, Krämer J, Altstädt V. Novel DOPO-based flame retardants in high-performance carbon fiber epoxy composites for aviation. Eur Polym J. 2011;47(5):1081–9. https://doi.org/10.1016/j.eurpolymj.2011.02.008.

    Article  CAS  Google Scholar 

  46. Liu LN, Huang GB, Song PA, Yu YM, Fu SY. Converting industrial alkali lignin to biobased functional additives for improving fire behavior and smoke suppression of polybutylene succinate. ACS Sustain Chem Eng. 2016;4(9):4732–42. https://doi.org/10.1021/acssuschemeng.6b00955.

    Article  CAS  Google Scholar 

  47. Jin X, Sun J, Zhang JS, Gu X, Bourbigot S, Li H, Tang W, Zhang S. Preparation of a novel intumescent flame retardant based on supramolecular interactions and its application in polyamide 11. ACS Appl Mater Inter. 2017;9(29):24964–75. https://doi.org/10.1021/acsami.7b06250.

    Article  CAS  Google Scholar 

  48. Lu X, Yu M, Wang D, Xiu P, Xu C, Lee AF, Gu X. Flame-retardant effect of a functional DOPO-based compound on lignin-based epoxy resins. Mater Today Chem. 2021;22:100562. https://doi.org/10.1016/j.mtchem.2021.100562.

    Article  CAS  Google Scholar 

  49. Qi XL, Zhou DD, Zhang J, Hu S, Haranczyk M, Wang DY. Simultaneous improvement of mechanical and fire-safety properties of polymer composites with phosphonate-loaded MOF additives. ACS Appl Mater Inter. 2019;11:20325–32. https://doi.org/10.1021/acsami.9b02357.

    Article  CAS  Google Scholar 

  50. Liao SH, Liu PL, Hsiao MC, Teng CC, Wang CA, Ger MD, Chiang CL. One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind Eng Chem Res. 2012;51:4573–81. https://doi.org/10.1021/ie2026647.

    Article  CAS  Google Scholar 

  51. Tang S, Qian LJ, Liu XX, Dong YP. Gas-phase flame-retardant effects of a bi-group compound based on phosphaphenanthrene and triazine-trione groups in epoxy resin. Polym Degrad Stab. 2016;133:350–7. https://doi.org/10.1016/j.polymdegradstab.2016.09.014.

    Article  CAS  Google Scholar 

  52. Ma C, Yu B, Hong NN, Pan Y, Hu WZ, Hu Y. Facile synthesis of a highly efficient, halogen-free, and intumescent flame retardant for epoxy resins: thermal properties, combustion behaviors, and flame-retardant mechanisms. Ind Eng Chem Res. 2016;55:10868–79. https://doi.org/10.1021/acs.iecr.6b01899.

    Article  CAS  Google Scholar 

  53. Alaerts L, Seguin E, Poelman H, Thibault-Starzyk F, Jacobs P, De Vos DE. Probing the lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). Chem Eur J. 2006;12(28):7353–63. https://doi.org/10.1002/chem.200600220.

    Article  CAS  PubMed  Google Scholar 

  54. Li X, Yang X, Xue H, Pang H, Xu Q. Metal–organic frameworks as a platform for clean energy applications. J Energy Chem. 2020;2(2):100027. https://doi.org/10.1016/j.enchem.2020.100027.

    Article  Google Scholar 

  55. Ryu U, Jee S, Rao PC, Shin J, Ko C, Yoon M, Park KS, Choi KM. Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coord Chem Rev. 2021;426:213544. https://doi.org/10.1016/j.ccr.2020.213544.

    Article  CAS  PubMed  Google Scholar 

  56. Lu X, Gu X. Fabrication of a bi-hydroxyl-bi-DOPO compound with excellent quenching and charring capacities for lignin-based epoxy resin. Int J Biol Macromol. 2022;205:539–52. https://doi.org/10.1016/j.ijbiomac.2022.02.103.

    Article  CAS  PubMed  Google Scholar 

  57. Xu WZ, Zhang BL, Wang XL, Wang GS, Ding D. The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4 modified reduced graphene oxide/layered double hydroxide on epoxy resin. J Hazard Mater. 2018;343:364–75. https://doi.org/10.1016/j.jhazmat.2017.09.057.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (no.21774059), China Scholarship Council (CSC, no.202108320294), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions and the College Students’ Practice and Innovation Training Project (202310298009Z, 202310298169 K).

Author information

Authors and Affiliations

Authors

Contributions

HY contributed to the conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing-original draft, writing-review and editing and funding acquisition. YQ was involved in the conceptualization and resources. DL was involved in the data curation and resources. XL and XG were involved in the project administration and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xinyu Lu or Xiaoli Gu.

Ethics declarations

Conflict of interest

The authors state that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Qin, Y., Liang, D. et al. Preparation of a novel flame retardant based on phosphorus/nitrogen modified lignin with metal–organic framework and its application in epoxy resin. J Therm Anal Calorim 148, 12845–12857 (2023). https://doi.org/10.1007/s10973-023-12578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12578-3

Keywords

Navigation