Skip to main content
Log in

Preparation and combustion performance of molecular perovskite energetic material DAP-4-based composite with Titanium powder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Micron-sized titanium particles have potential applications as energetic metal high-enthalpy fuel materials. The molecular perovskite energetic material DAP-4 (H2dabco)[NH4(ClO4)3] is a potential high-energy oxidizer in solid rocket propellants. To explore the combustion mechanism and energy output of DAP-4-based Ti composites, the combustion characteristics of DAP-4/Ti and F/DAP-4/Ti were studied by electrode ignition device. The results show that the burning rate of DAP-4 can be adjusted by controlling the mass ratio of DAP-4/Ti. After adding Ti into DAP-4, the heat release, self-sustaining combustion time and flame front propagation velocity are greatly increased to 9,113 J g−1, 265 ms and 0.225 mm ms−1, respectively, better than those of DAP-4. With Ti added, the decomposition peak temperature of F/DAP-4/Ti dropped from 381.5 to 360.4 ℃. The experimental results contribute to a better understanding of the chemical reaction mechanism and energy release characteristics of DAP-4-based propellants containing Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Yadav N, Srivastava PK, Varma M. Recent advances in catalytic combustion of AP-based composite solid propellants. Defence Technol. 2021;17(3):1013–31. https://doi.org/10.1016/j.dt.2020.06.007.

    Article  Google Scholar 

  2. Jos J, Mathew S. Ammonium nitrate as an eco–friendly oxidizer for composite solid propellants: promises and challenges. Crit Rev Solid State Mater Sci. 2017;42(6):470–98. https://doi.org/10.1080/10408436.2016.1244642.

    Article  CAS  Google Scholar 

  3. Chaturvedi S, Dave PN. Solid propellants: AP/HTPB composite propellants. Arab J Chem. 2019;12(8):2061–8. https://doi.org/10.1016/j.arabjc.2014.12.033.

    Article  CAS  Google Scholar 

  4. Vara JA, Dave PN, Ram VR. Nanomaterials as modifier for composite solid propellants. Nano Struct Nano Objects. 2019;20: 100372. https://doi.org/10.1016/j.nanoso.2019.100372.

    Article  CAS  Google Scholar 

  5. He Q, Wang J, Mao Y, et al. Fabrication of gradient structured HMX/Al and its combustion performance. Combust Flame. 2021;226:222–8. https://doi.org/10.1016/j.combustflame.2020.12.003.

    Article  CAS  Google Scholar 

  6. Severac F, Alphonse P, Estève A, et al. High-energy Al/CuO nanocomposites obtained by DNA-directed assembly. Adv Func Mater. 2012;22(2):323–9. https://doi.org/10.1002/adfm.201100763.

    Article  CAS  Google Scholar 

  7. Dong H, Xia M, Wang C, et al. Al/NiO nanocomposites for enhanced energetic properties: Preparation by polymer assembly method. Mater Des. 2019;183: 108111. https://doi.org/10.1016/j.matdes.2019.108111.

    Article  CAS  Google Scholar 

  8. Pang W, De Luca LT, Fan X, et al. Effects of different nano-sized metal oxide catalysts on the properties of composite solid propellants. Combust Sci Technol. 2016;188(3):315–28. https://doi.org/10.1080/00102202.2015.1083986.

    Article  CAS  Google Scholar 

  9. Mahdavi M, Farrokhpour H, Tahriri M. Investigation of simultaneous formation of nano-sized CuO and ZnO on the thermal decomposition of ammonium perchlorate for composite solid propellants. J Therm Anal Calorim. 2018;132(2):879–93. https://doi.org/10.1007/s10973-018-7018-0.

    Article  CAS  Google Scholar 

  10. Valluri SK, Ravi KK, Schoenitz M, et al. Effect of boron content in B· BiF3 and B· Bi composites on their ignition and combustion. Combust Flame. 2020;215:78–85. https://doi.org/10.1016/j.combustflame.2020.01.026.

    Article  CAS  Google Scholar 

  11. Swetha BN, Keshavamurthy K, Gupta G, et al. Silver nanoparticles enhanced photoluminescence and the spectroscopic performances of Nd3+ ions in sodium lanthanum borate glass host: Effect of heat treatment. Ceram Int. 2021;47(15):21212–20. https://doi.org/10.1016/j.ceramint.2021.04.124.

    Article  CAS  Google Scholar 

  12. Zhou X, Torabi M, Lu J, et al. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl Mater Interfaces. 2014;6(5):3058–74. https://doi.org/10.1021/am4058138.

    Article  CAS  PubMed  Google Scholar 

  13. Yuan X, Meng L, Zheng C, et al. Deep insight into the mechanism of catalytic combustion of CO and CH4 over SrTi1–x BxO3 (B= Co, Fe, Mn, Ni, and Cu) perovskite via flame spray pyrolysis. ACS Appl Mater Interfaces. 2021;13(44):52571–87. https://doi.org/10.1021/acsami.1c14055.

    Article  CAS  PubMed  Google Scholar 

  14. Chen SL, Yang ZR, Wang BJ, et al. Molecular perovskite high-energetic materials. Sci China Mater. 2018;61(8):1123–8. https://doi.org/10.1007/s40843-017-9219-9.

    Article  CAS  Google Scholar 

  15. Peng D, Guo X, Fang H, et al. Novel Role of Molecular Perovskite Energetic Materials: A Potential High-Energy Oxidant for the Solid Rocket Propellant. Available at SSRN 4000440.

  16. Zhou J, Ding L, Zhao F, et al. Thermal studies of novel molecular perovskite energetic material (C6H14N2)[NH4 (ClO4)3]. Chin Chem Lett. 2020;31(2):554–8. https://doi.org/10.1016/j.cclet.2019.05.008.

    Article  CAS  Google Scholar 

  17. Li X, Hu S, Cao X, et al. Ammonium perchlorate-based molecular perovskite energetic materials: preparation, characterization, and thermal catalysis performance with MoS2. J Energ Mater. 2020;38(2):162–9. https://doi.org/10.1080/07370652.2019.1679281.

    Article  CAS  Google Scholar 

  18. Han K, Zhang X, Deng P, et al. Study of the thermal catalysis decomposition of ammonium perchlorate-based molecular perovskite with titanium carbide MXene. Vacuum. 2020;180: 109572. https://doi.org/10.1016/j.vacuum.2020.109572.

    Article  CAS  Google Scholar 

  19. Zhu S, Cao X, Cao X, et al. Metal-doped (Fe, Nd, Ce, Zr, U) graphitic carbon nitride catalysts enhance thermal decomposition of ammonium perchlorate-based molecular perovskite. Mater Des. 2021;199: 109426. https://doi.org/10.1016/j.matdes.2020.109426.

    Article  CAS  Google Scholar 

  20. Fang H, Guo X, Wang W, et al. The thermal catalytic effects of CoFe-Layered double hydroxide derivative on the molecular perovskite energetic material (DAP-4). Vacuum. 2021;193: 110503. https://doi.org/10.1016/j.vacuum.2021.110503.

    Article  CAS  Google Scholar 

  21. Rehwoldt MC, Yang Y, Wang H, et al. Ignition of nanoscale titanium/potassium perchlorate pyrotechnic powder: reaction mechanism study. The Journal of Physical Chemistry C. 2018;122(20):10792–800. https://doi.org/10.1021/acs.jpcc.8b03164.

    Article  CAS  Google Scholar 

  22. Yetter RA, Risha GA, Son SF. Metal particle combustion and nanotechnology. Proc Combust Inst. 2009;32(2):1819–38. https://doi.org/10.1016/j.proci.2008.08.013.

    Article  CAS  Google Scholar 

  23. Girt E, Altounian Z, Swainson I P. The influence of the enthalpy of mixing on the Fe-substitution in Nd2Fe16. 5X0. 5 (X= Al, Ti, Nb, W). Physica B: Condensed Matter. 1997; 234: 637–639. https://doi.org/10.1016/S0921-4526(96)01068-X.

  24. Pantović Pavlović M R, Stanojević B P, Pavlovic M M, et al. Anodizing/Anaphoretic Electrodeposition of Nano-Calcium Phosphate/Chitosan Lactate Multifunctional Coatings on Titanium with Advanced Corrosion Resistance, Bioactivity, and Antibacterial Properties. ACS Biomaterials Science & Engineering. 2021; 7(7): 3088–3102. https://doi.org/10.1021/acsbiomaterials.1c00035.

  25. Shafirovich E, Teoh SK, Varma A. Combustion of levitated titanium particles in air. Combust Flame. 2008;152(1–2):262–71. https://doi.org/10.1016/j.combustflame.2007.05.008.

    Article  CAS  Google Scholar 

  26. Jacob R J, Zong Y, Yang Y, et al. Measurement of size resolved burning of metal nanoparticles for evaluation of combustion mechanisms//Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA. 2016; 4–8. https://doi.org/10.2514/6.2016-0687.

  27. Deng P, Wang H, Yang X, et al. Thermal decomposition and combustion performance of high-energy ammonium perchlorate-based molecular perovskite. J Alloy Compd. 2020;827: 154257. https://doi.org/10.1016/j.jallcom.2020.154257.

    Article  CAS  Google Scholar 

  28. Mao Y, He Q, Wang J, et al. Rational design of gradient structured fluorocarbon/Al composites towards tunable combustion performance. Combust Flame. 2021;230: 111436. https://doi.org/10.1016/j.combustflame.2021.111436.

    Article  CAS  Google Scholar 

  29. Liu Y, Hu L, Gong S, et al. Study of Ammonium Perchlorate-based Molecular Perovskite (H2DABCO)[NH4(ClO4)3]/Graphene Energetic Composite with Insensitive Performance. Central European Journal of Energetic Materials. 2020; 17(3). https://doi.org/10.22211/cejem/127934.

  30. Gao D, Wei X, Liu J, et al. Laser ignition and combustion characteristics of B-Al compound powder without and with HMX: a comparative study. Aerosp Sci Technol. 2022;120: 107268. https://doi.org/10.1016/j.ast.2021.107268.

    Article  Google Scholar 

  31. Chaturvedi S, Dave PN, Patel NN. Thermal decomposition of AP/HTPB propellants in presence of Zn nanoalloys. Appl Nanosci. 2015;5(1):93–8. https://doi.org/10.1007/s13204-014-0296-3.

    Article  CAS  Google Scholar 

  32. Duan H, Lin X, Liu G, et al. Synthesis of Ni nanoparticles and their catalytic effect on the decomposition of ammonium perchlorate. J Mater Process Technol. 2008;208(1–3):494–8. https://doi.org/10.1016/j.jmatprotec.2008.01.011.

    Article  CAS  Google Scholar 

  33. Reid DL, Kreitz KR, Stephens MA, et al. Development of highly active titania-based nanoparticles for energetic materials. J Phys Chem C. 2011;115(21):10412–8. https://doi.org/10.1021/jp200993s.

    Article  CAS  Google Scholar 

  34. Chen S, An T, Gao Y, et al. Gaseous products evolution analyses for catalytic decomposition of AP by graphene-based additives. Nanomaterials. 2019;9(5):801. https://doi.org/10.3390/nano9050801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang WJ, Li P, Xu HB, et al. Thermal decomposition of ammonium perchlorate in the presence of Al(OH)3· Cr(OH)3 nanoparticles. J Hazard Mater. 2014;268:273–80. https://doi.org/10.1016/j.jhazmat.2014.01.016.

    Article  CAS  PubMed  Google Scholar 

  36. Zhai P, Shi C, Zhao S, et al. Thermal decomposition of ammonium perchlorate-based molecular perovskite from TG-DSC-FTIR-MS and ab initio molecular dynamics. RSC Adv. 2021;11(27):16388–95. https://doi.org/10.1039/D0RA10559G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dennis C, Bojko B. On the combustion of heterogeneous AP/HTPB composite propellants: a review. Fuel. 2019;254: 115646.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52276138) and the Fundamental Research Program of Shanxi Province (No. 20210302123030, 202203021212160). Authors thank Dr. Peng Deng of Beijing Institute of Technology for his help in experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lishuang Hu or Yanping Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Ethics approval was not required for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 364 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, K., Liu, Y., Hu, L. et al. Preparation and combustion performance of molecular perovskite energetic material DAP-4-based composite with Titanium powder. J Therm Anal Calorim 148, 12739–12750 (2023). https://doi.org/10.1007/s10973-023-12572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12572-9

Keywords

Navigation