Skip to main content
Log in

Comparative study of heat transfer and pressure drop in turbulent flow of a singular and hybrid nanofluids into a horizontal pipe

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Convection heat transfer and pressure drop of singular nanofluids (SNFs) including CuO/water, CaCO3/water, SiO2/water, binary hybrid nanofluids (BHNFs) containing CaCO3/SiO2/water and ternary hybrid nanofluids (THNFs) comprising CuO/CaCO3/SiO2/water through horizontal circular pipe under turbulent flow regime were studied, experimentally. Experimental results elucidated that the addition of nano-CaCO3 and nano-SiO2 particles to the base liquid enhanced heat transfer rate and reduced pressure drop, significantly. The uppermost augmentation in heat transfer coefficient (HTC) detected in THNFs (with 60:30:10 volume fractions) and the lowest enhancement in pressure drop belonged to CuO/CaCO3/SiO2/water THNFs (with 60:30:10 volume fractions, respectively). In addition, maximum enhancement in HTC obtained as 72% and pressure drop decreased as 48%. So, the flow resistance of the nanofluids reduced considerably relative to distilled water (DW). HTCs of supplied nanofluids were compared with some theoretical correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Tube cross-sectional area (m2)

C p :

Specific heat capacity (Jg1k1)

h :

Heat transfer coefficient

\(K\) :

Thermal conductivity (Wm1 k1)

L :

Tube length (m)

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

\(T\) :

Temperature (°C)

u :

Average fluid velocity (ms1)

\(\rho\) :

Density (g cm3)

φ :

Volume fraction

μ :

Dynamic viscosity (Pa s)

bf:

Base fluid

nf:

Nanofluid

np:

Nanoparticle

w :

Wall

b :

Bulk

DW:

Distilled water

SDS:

Sodium dodecyl sulfate

THNFs:

Ternary hybrid nanofluids

DHNFs:

Dual hybrid nanofluids

exp:

Experimental

References

  1. Bergles A. Recent developments in convective heat transfer augmentation. Appl Mech Rev. 1973;26:675–82.

    Google Scholar 

  2. Ahuja AS. Augmentation of heat transport in laminar flow of polystyrene suspensions. I. experiments and results. J Appl Phys. 1975;46(8):3408–16.

    Article  CAS  Google Scholar 

  3. Kasaeian A, et al. Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Convers Manag. 2015;89:368–75.

    Article  CAS  Google Scholar 

  4. Khattak M, Mukhtar A, Afaq SK. Application of nano-fluids as coolant in heat exchangers: a review. J Adv Res Mater Sci. 2020;66(1):8–18.

    Google Scholar 

  5. Chandrasekar M, Suresh S, Bose AC. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci. 2010;34(2):210–6.

    Article  CAS  Google Scholar 

  6. Keblinski P, Eastman JA, Cahill DG. Nanofluids for thermal transport. Mater Today. 2005;8(6):36–44.

    Article  CAS  Google Scholar 

  7. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    Article  CAS  Google Scholar 

  8. Amiri Delouei A, Sajjadi H, Ahmadi G. Ultrasonic vibration technology to improve the thermal performance of CPU water-cooling systems: experimental investigation. Water. 2022;14(24):4000.

    Article  Google Scholar 

  9. Delouei AA, Sajjadi H, Ahmadi G. The effect of piezoelectric transducer location on heat transfer enhancement of an ultrasonic-assisted liquid-cooled CPU radiator. Iran J Sci Technol Trans Mech Eng. 2023. https://doi.org/10.1007/s40997-023-00667-5.

    Article  Google Scholar 

  10. Amiri Delouei A, et al. Louvered fin-and-flat tube compact heat exchanger under ultrasonic excitation. Fire. 2022;6(1):13.

    Article  Google Scholar 

  11. Amiri Delouei A, et al. The thermal effects of multi-walled carbon nanotube concentration on an ultrasonic vibrating finned tube heat exchanger. Int Commun Heat Mass Transfer. 2022;135:106098.

    Article  CAS  Google Scholar 

  12. Alizadeh R, et al. Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media. J Therm Anal Calorim. 2019;135:489–506.

    Article  CAS  Google Scholar 

  13. Valizadeh Ardalan M, et al. Analysis of unsteady mixed convection of Cu–water nanofluid in an oscillatory, lid-driven enclosure using lattice Boltzmann method. J Therm Anal Calorim. 2021;145:2045–61.

    Article  CAS  Google Scholar 

  14. Mesgarpour M, et al. The comparative investigation of three approaches to modeling the natural convection heat transfer: A case studyon conical cavity filled with Al2O3 nanoparticles. J Taiwan Inst Chem Eng. 2021;124:174–91.

    Article  CAS  Google Scholar 

  15. Fotukian S, Esfahany MN. Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass Transfer. 2010;37(2):214–9.

    Article  CAS  Google Scholar 

  16. Li H, Ha C-S, Kim I. Fabrication of carbon nanotube/SiO2 and carbon nanotube/SiO2/Ag nanoparticles hybrids by using plasma treatment. Nanoscale Res Lett. 2009;4:1384–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suresh S, et al. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci. 2012;38:54–60.

    Article  CAS  Google Scholar 

  18. Madhesh D, Parameshwaran R, Kalaiselvam S. Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp Therm Fluid Sci. 2014;52:104–15.

    Article  CAS  Google Scholar 

  19. Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    Article  CAS  Google Scholar 

  20. Madhesh D, Kalaiselvam S. Experimental study on heat transfer and rheological characteristics of hybrid nanofluids for cooling applications. J Exp Nanosci. 2015;10(15):1194–213.

    Article  CAS  Google Scholar 

  21. Yarmand H, et al. Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag. 2015;100:419–28.

    Article  CAS  Google Scholar 

  22. Soltani O, Akbari M. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study. Physica E: Low-Dimens Syst Nanostruct. 2016;84:564–70.

    Article  CAS  Google Scholar 

  23. Takabi B, Gheitaghy AM, Tazraei P. Hybrid water-based suspension of Al2O3 and Cu nanoparticles on laminar convection effectiveness. J Thermophys Heat Transf. 2016;30(3):523–32.

    Article  CAS  Google Scholar 

  24. Yarmand H, et al. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transf. 2016;77:15–21.

    Article  CAS  Google Scholar 

  25. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid: effects of temperature and nanoparticles concentration. J Therm Anal Calorim. 2016;125:527–35.

    Article  CAS  Google Scholar 

  26. Pouranfard A, Mowla D, Esmaeilzadeh F. An experimental study of drag reduction by nanofluids through horizontal pipe turbulent flow of a Newtonian liquid. J Ind Eng Chem. 2014;20(2):633–7.

    Article  CAS  Google Scholar 

  27. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  28. Batchelor G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.

    Article  Google Scholar 

  29. Wang X, Xu X, Choi SU. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf. 1999;13(4):474–80.

    Article  CAS  Google Scholar 

  30. Rashmi W, et al. Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic. J Exp Nanosci. 2011;6(6):567–79.

    Article  CAS  Google Scholar 

  31. Eapen J, et al. The classical nature of thermal conduction in nanofluids. ASME J Heat Transf. 2010;132(10):102402.

    Article  Google Scholar 

  32. Esfe MH, et al. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int Commun Heat Mass Transf. 2014;58:176–83.

    Article  Google Scholar 

  33. Rajkotwala A, Banerjee J. Influence of rheological behavior of nanofluid on heat transfer. WSEAS Trans Heat Mass Transf. 2013;8:67–81.

    Google Scholar 

  34. Kline SJ. Describing uncertainties in single-sample experiments. Mech Eng. 1963;75:3–8.

    Google Scholar 

  35. Taler D, Taler J. Simple heat transfer correlations for turbulent tube flow. In: E3S Web of conferences. EDP Sciences. 2017.

  36. Darzi AR, et al. Experimental investigation of turbulent heat transfer and flow characteristics of SiO2/water nanofluid within helically corrugated tubes. Int Commun Heat Mass Transf. 2012;39(9):1425–34.

    Article  CAS  Google Scholar 

  37. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat transf. 2003;125(1):151–5.

    Article  CAS  Google Scholar 

  38. Buongiorno J. Convective transport in nanofluids. ASME J Heat Transf. 2006;128(3):240–50.

    Article  Google Scholar 

  39. Shehzad N, et al. Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq. 2016;222:446–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parviz Darvishi or Abdolrasoul Pouranfard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, M., Darvishi, P. & Pouranfard, A. Comparative study of heat transfer and pressure drop in turbulent flow of a singular and hybrid nanofluids into a horizontal pipe. J Therm Anal Calorim 148, 14375–14384 (2023). https://doi.org/10.1007/s10973-023-12570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12570-x

Keywords

Navigation