Skip to main content
Log in

A study on the abnormal thermal behaviors of barkinite by ReaxFF molecular dynamics simulation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Barkinite is termed as a maceral in the Chinese bituminous coal, but it has not been recognized by International Committee for Coal and Organic Petrology, which is related to the unclear chemical structure of barkinite. The abnormal thermal behaviors of barkinite/bark coal were reported in our previous works, but the reason is not fully understood. For discussing these issues, the chemical structural model of barkinite with a molecular formula of C128H166N2O11 was constructed by elemental analysis, 13C nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. Besides, a heat up simulation of barkinite model was also performed by ReaxFF. The results showed that the chemical structural model of barkinite has long aliphatic chains and many hydroxyl and ether functional groups, which act as side chains and bridges. Naphthalene is main aromatic unit. When barkinite model system was heated from 300 to 2850 K, the change trends of pyrolysis products were described from four pyrolysis stages. The most noticeable changes of tar yields occurred in the simulated temperature range of 2100–2600 K, which caused the abnormal thermal behaviors of barkinite. According to the reaction pathways, the formation of tar products is related to the cleavage of aliphatic chains and the recombination of small molecular free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Standardization Administration of China . Classification of macerals for bituminous coal (GB/T 15588–2001). Standards press of China: Beijing,2001, 1–7

  2. Sun YZ, Horsfield B. Comparison of the geochemical characteristics of “barkinite”and other macerals from the Dahe mine. South China Energy Explor Exploit. 2005;23(6):475–94.

    Article  CAS  Google Scholar 

  3. Zhong NN, Smyth M. Striking liptinitic bark remains peculiar to some Late Permian Chinese coals. Int J Coal Geol. 1997;33(4):333–49.

    Article  Google Scholar 

  4. Pickel W, Kus J, Flores D, Kalaitzidis S, Christanis K, Cardotte BJ, Misz-Kennan M, Rodrigues S, Hentschel A, Hamor-Vido M, Crosdale P, Wagner N. Classification of liptinite–ICCP system 1994. Int J Coal Geol. 2017;169:40–61.

    Article  CAS  Google Scholar 

  5. Hower JC, Suárez-Ruiz I, Mastalerz M, Cook AC. The investigation of chemical structure of coal macerals via transmitted–light FT–IR microscopy by X.Sun. Spectrochim Acta Part A. 2007;67:1433–7.

    Article  Google Scholar 

  6. Strydom CA, Bunt JR, Schobert HH, Raghoo M. Changes to the organic functional groups of an inertinite rich medium rank bituminous coal during acid treatment processes. Fuel Process Technol. 2011;92(4):764–70.

    Article  CAS  Google Scholar 

  7. Solum MS, Pugmire RJ, Grant DM. Carbon-13 solid-state NMR of Argonne-premium coals. Energy Fuels. 1989;3(2):187–93.

    Article  CAS  Google Scholar 

  8. Jaiswal Y, Pal SL. Structural characterization of Indian vitrinite-rich bituminous Karharbari coal. ACS Omega. 2020;5(12):6336–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaiswal Y, Pal SL, Jain A, Kush L, Jaiswal H, Srivastava S. A multi-tool structural change investigation of Indian vitrinite rich bituminous coal due to CS2/NMP interaction. J Mol Liq. 2021;323(1): 114599.

    Article  CAS  Google Scholar 

  10. Lu L, Sahajwalla V, Kong C, Harris D. Quantitative X-ray diffraction analysis and its application to various coals. Carbon. 2001;39(12):1821–33.

    Article  CAS  Google Scholar 

  11. Xu J, He QC, Xiong Z, Yu Y, Zhang S, Hu X, Jiang L, Su S, Hu S, Wang Y, Xiang J. Raman spectroscopy as a versatile tool for investigating thermochemical processing of coal, biomass, and wastes: recent advances and future perspectives. Energy Fuels. 2021;35(4):2870–913.

    Article  CAS  Google Scholar 

  12. Yuan L, Liu QF, Mathews JP, Zhang H, Wu YK. Quantifying the structural transitions of Chinese coal to coal-derived natural graphite by XRD, raman spectroscopy, and HRTEM image analyses. Energy Fuels. 2021;35(3):2335–46.

    Article  CAS  Google Scholar 

  13. Jaiswal Y, Pal SL, Jaiswal H, Jain A, Kush L, Rai D, Tatar D. An investigation of changes in structural parameters and organic functional groups of inertinite rich lignite during acid treatment processes. Energy Sources Part A. 2021: 1–18. https://doi.org/10.1080/15567036.2021.1923867.

  14. Qin KZ, Guo SH, Huang DF, Li LY. Chemical structure and oil/gas potential of hydrocarbon source rock macerals as viewed by 13C NMR techniques. Journal of The University of Petroleum, China. 1995;19:87–94 ((in Chinese)).

    CAS  Google Scholar 

  15. Wang SQ, Tang YG, Schobert HH, Guo YN, Su YF. FTIR and 13C NMR Investigation of coal component of Late Permian coals from Southern China. Energy Fuels. 2011;25:5672–7.

    Article  CAS  Google Scholar 

  16. Wang SQ, Tang YG, Schobert HH, Jiang D, Guo X, Huang F, Guo YN, Su YF. Chemical compositional and structural characteristics of Late Permian bark coals from Southern China. Fuel. 2014;126:116–21.

    Article  CAS  Google Scholar 

  17. Wang SQ, Liu SM, Sun YB, Jiang D, Zhang XM. Investigation of coal components of Late Permian different ranks bark coal using AFM and Micro–FTIR. Fuel. 2017;187:51–7.

    Article  CAS  Google Scholar 

  18. Wang SQ, Tang YG, Schobert HH, Mitchell GD, Liao FR, Liu ZZ. A thermal behavior study of Chinese coals with high hydrogen content. Int J Coal Geol. 2010;81:37–44.

    Article  CAS  Google Scholar 

  19. Wang SQ, Tang YG, Schobert HH, Guo YN, Gao WC, Lu XK. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China. J Anal Appl Pyrol. 2013;100:75–80.

    Article  CAS  Google Scholar 

  20. Wang SQ, Tang YG, Schobert HH, Jiang D, Sun YB, Guo YN, Su YF, Yang SP. Application and thermal properties of hydrogen–rich bark coal. Fuel. 2015;162:121–7.

    Article  CAS  Google Scholar 

  21. Wang SQ, Wang DX, Tang YG, Sun YB, Jiang D, Su T. Study of pyrolysis behavior of hydrogen–rich bark coal by TGA and Py–GC/MS. J Anal Appl Pyrol. 2017;128:136–42.

    Article  CAS  Google Scholar 

  22. Wang SQ, Chen H, Ma W, Liu PH, Yang ZD. Structural transformations of coal components upon heat treatment and explanation on their abnormal thermal behaviors. Energy Fuels. 2017;31(11):11587–93.

    Article  CAS  Google Scholar 

  23. Wang SQ, Zhang XM, Lin YH, Sha YM. Hydrocarbon-generated potential of bark coal components from Southern China. J Therm Anal Calorim. 2019;135(6):3297–302.

    Article  CAS  Google Scholar 

  24. Parr RG. Density functional theory. Chem Eng News. 1983;68:2470–84.

    Google Scholar 

  25. Salmon E, van Duin ACT, Lorant F, Marquaire PM, Goddard WA. Early maturation processes in coal. Part: 2 reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures. Org Geochem. 2009;40(12):1195–209.

    Article  CAS  Google Scholar 

  26. Zheng M, Li XX, Liu J, Guo L. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics. Energy Fuels. 2013;27(6):2942–51.

    Article  CAS  Google Scholar 

  27. Zheng M, Li XX, Nie FG, Guo L. Investigation of overall pyrolysis stages for Liulin Bituminous coal by large–scale ReaxFF molecular dynamics. Energy Fuels. 2017;31(4):3675–83.

    Article  CAS  Google Scholar 

  28. Zheng M, Pan Y, Wang Z, Li XX, Guo L. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments. Fuel. 2020;268: 117290.

    Article  CAS  Google Scholar 

  29. Castro–Marcano F, Russo MF, van Duin ACT, Mathews JP. Pyrolysis of a large–scale molecular model for Illinois no. 6 coal using the ReaxFF reactive force field. J Anal Appl Pyrol. 2014;109:79–89.

    Article  Google Scholar 

  30. Hong DK, Guo X. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field. Fuel. 2017;210:58–66.

    Article  CAS  Google Scholar 

  31. Hong DK, Li P, Si T, Guo X. ReaxFF simulations of the synergistic effect mechanisms during co–pyrolysis of coal and polyethylene/polystyrene. Energy. 2021;218: 119553.

    Article  CAS  Google Scholar 

  32. Xu F, Liu H, Wang Q, Pan S, Zhao D, Liu Y. Study of non–isothermal pyrolysis mechanism of lignite using ReaxFF molecular dynamics simulations. Fuel. 2019;256: 115884.

    Article  CAS  Google Scholar 

  33. Guo YN, Tang YG, Wang SQ, Li WW, Jia L. Maceral separation of bark coal and molecular structure study through high resolution TEM images. J China Coal Soc. 2013;38:1019–24 ((in Chinese)).

    CAS  Google Scholar 

  34. Xiang JH, Zeng FG, Liang HZ, Sun BL, Zhang L, Li MF, Jia JB. Model construction of the macromolecular structure of Yanzhou Coal and its molecular simulation. J Fuel Chem Technol. 2011;39(7):481–8 ((in Chinese)).

    Article  CAS  Google Scholar 

  35. Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapour deposition of diamond films. Phys Rev B. 1990;42:9458–71.

    Article  CAS  Google Scholar 

  36. Chenoweth K, van Duin ACT, Goddard WA. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A. 2008;112:1040–53.

    Article  CAS  PubMed  Google Scholar 

  37. Bhoi S, Banerjee T, Mohanty K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF. Fuel. 2014;136:326–33.

    Article  CAS  Google Scholar 

  38. van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396–409.

    Article  Google Scholar 

  39. Castro-Marcano F, Kamat AM, Russo MF, van Duin ACT, Mathews JP. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combust Flame. 2012;159:1272–85.

    Article  CAS  Google Scholar 

  40. Gao MJ, Li XX, Guo L. Pyrolysis simulations of Fugu coal by large–scale ReaxFF molecular dynamics. Fuel Process Technol. 2018;178:197–205.

    Article  CAS  Google Scholar 

  41. Liu L, Du ML, Fan JW, Li G, Cai YC. Embedded characteristics and macromolecular structure of sporinite of Pingdingshan coal in Early Permian. Energ Source Part A. 2019;2:1–14.

    Google Scholar 

  42. Du ML, Liu L, Fan JW, Li G, Schobert HH, Cai YC, Yang JL. Prediction and characterization of macromolecular structure of cutinite from luquan cutinitic liptobiolith with molecular simulation. Energ Source Part A. 2020; 1–16.

  43. Lin HL, Wang YH, Gao SS, XueS Y, Yan CY, Han S. Chemical structural characteristics of high inertinite coal. Fuel. 2021;286: 119283.

    Article  CAS  Google Scholar 

  44. Ping A, Xia WC, Peng YL, Xie GY. Construction of bituminous coal vitrinite and inertinite molecular assisted by 13C NMR. FTIR and XPS J Mol Struct. 2020;1222: 128959.

    Article  CAS  Google Scholar 

  45. Liu J, Yan CY, Zhang C, Wang AQ, Wang ZX, Xu YH, Feng L. Construction of the structure model of Zhaotong lignite skeleton by TG-GC/MS and 13C-NMR data. J Therm Anal Calorim. 2022: 1–8.

  46. Zhao Y, Wang S, Liu Y, Song XX, Chen H, Zhang XM, Lin YH, Wang XL. Molecular modeling and reactivity of thermally altered coals by molecular simulation techniques. Energy Fuels. 2021;35(19):15663–74.

    Article  CAS  Google Scholar 

  47. Solum MS, Pugmire RJ, Grant DM. Carbon–13 solid–state NMR of Argonne–premium coals. Energy Fuels. 1989;3(2):187–93.

    Article  CAS  Google Scholar 

  48. Liu JX, Jiang YZ, Yao W, Jiang X, Jiang XM. The molecular characterization of Henan anthracite coal. Energy Fuels. 2019;33:6215–25.

    Article  CAS  Google Scholar 

  49. Wang Q, Pan S, Bai JR, Chi MS, Cui D, Wang ZC, Liu Q, Xu F. Experimental and dynamics simulation studies of the molecular modeling and reactivity of the Yaojie oil shale kerogen. Fuel. 2018;230:319–30.

    Article  CAS  Google Scholar 

  50. Okolo GN, Neomagus HWJP, Everson RC, Roberts MJ, Bunt JR, Sakurovs R, Mathews JP. Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques. Fuel. 2015;158:779–92.

    Article  CAS  Google Scholar 

  51. Kalaitzidis S, Georgakopoulos A, Christanis K, Iordanidis A. Early coalification features as approached by solid state 13C CP/MAS NMR spectroscopy. Geochim Cosmochim Acta. 2006;70:947–59.

    Article  CAS  Google Scholar 

  52. Tian B, Qiao YY, Bai L, Liu FJ, Tian YY, Xie KC. Separation and structural characterization of groups from a high–volatile bituminous coal based on multiple techniques. Fuel Process Technol. 2017;159:386–95.

    Article  CAS  Google Scholar 

  53. Tong JH, Han XX, Wang S, Jiang XM. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (Solid–State 13C NMR, XPS, FT–IR, and XRD). Energy Fuels. 2011;25:4006–13.

    Article  CAS  Google Scholar 

  54. Song Y, Zhu YM, Li W. Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite. Appl Surf Sci. 2017;96:291–302.

    Google Scholar 

  55. Zhou Q. Study on occurrence mode of sulfur and nitrogen in coal in China. Clean Coal Technol. 2008;14:73–7 ((in Chinese)).

    Google Scholar 

  56. Takanohashi T, Kawashima H. Construction of a model structure for Upper Freeport coal using 13C NMR chemical shift calculations. Energy Fuels. 2002;16:379–87.

    Article  CAS  Google Scholar 

  57. Lille Ü, Heinmaa I, Pehk T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel. 2003;82(7):799–804.

    Article  CAS  Google Scholar 

  58. Saha B, Schatz GC. Carbonization in polyacrylonitrile (PAN) based carbon fibers studied by ReaxFF molecular dynamics simulations. J Phys Chem B. 2012;116(15):4684–92.

    Article  CAS  PubMed  Google Scholar 

  59. Wang HJ, Feng YH, Zhang XX, Lin W, Zhao YL. Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation. Fuel. 2015;145:241–8.

    Article  CAS  Google Scholar 

  60. Chen SY, Ding JX, Li GY, Wang JP, Tian Y, Liang YH. Theoretical study of the formation mechanism of sulfur-containing gases in the CO2 gasification of lignite. Fuel. 2019;242:398–407.

    Article  CAS  Google Scholar 

  61. Fletcher TH, Kerstein AR, Pugmire RJ, Solum MS, Grant DM. Chemical percolation model for devolatilization3 Direct use of C–13 NMR data to predict effects of coal type. Energy Fuels. 1992;6(4):414–31.

    Article  CAS  Google Scholar 

  62. Zhang ZJ, Guo LT, Zhang HY, Zhan JH. Comparing product distribution and desulfurization during direct pyrolysis and hydropyrolysis of Longkou oil shale kerogen using reactive MD simulations. Int J Hydrogen Energ. 2019;44(47):25335–46.

    Article  CAS  Google Scholar 

  63. Zheng M, Li XX, Wang MJ, Guo L. Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large–scale reactive molecular dynamic simulation. Fuel. 2019;253:910–20.

    Article  CAS  Google Scholar 

  64. Sun XG. A study of chemical structure in “barkinite” using time of flight secondary ion mass spectrometry. Int J Coal Geol. 2001;47:1–8.

    Article  CAS  Google Scholar 

  65. Sun XG. The optical features and hydrocarbon-generating model of “barkinite” from Late Permian coals in South China. Int J Coal Geol. 2002;51:251–61.

    Article  CAS  Google Scholar 

  66. Dai HW, Chen NS, Liu NQ, Chen WM. Macerals and physico-chemical properties of Loping bark coal. J China Coal Soc. 1984;3:81–7 ((in Chinese)).

    Google Scholar 

  67. Ouchi K, Itoh S, Makabe M, Itoh H. Pyridine extractable material from bituminous coal, its donor properties and its effect on plastic properties. Fuel. 1989;68(6):735–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the National Natural Science Foundation of China (Research Project No. 41472132; 42030807).

Author information

Authors and Affiliations

Authors

Contributions

SW contributed to conceptualization, methodology, project administration, validation, writing—original draft, writing—review & editing, supervision, funding acquisition. XW contributed to methodology, software, validation, formal analysis, investigation, writing—original draft, writing—review & editing. YZ contributed to methodology, software, validation, formal analysis, investigation, writing—original draft, writing—review & editing. YL contributed to investigation, validation, and software.

Corresponding author

Correspondence to Shaoqing Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 525 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, X., Zhao, Y. et al. A study on the abnormal thermal behaviors of barkinite by ReaxFF molecular dynamics simulation. J Therm Anal Calorim 148, 12421–12432 (2023). https://doi.org/10.1007/s10973-023-12560-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12560-z

Keywords

Navigation