Skip to main content
Log in

Study on the combustion indices of forest species using thermogravimetric analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The challenges of this work focus on better understanding combustion characteristics and their importance to fire hazard by performing thermogravimetric analysis (TGA). The ultimate goal is to provide a methodology for determining the most relevant indices for a robust fire hazard classification of the species. One of the principles of this methodology is the use of a linear regression method for determining the indices and the activation energy. To achieve this scope, chemical, thermal and kinetic analysis will be performed. Nine combustion indices were calculated and compared to assess combustion characteristics such as ignition, combustion and burnout. Experiments were carried out at three heating rates of 10, 15 and 20 °C min−1 under air atmosphere. A selection of forest materials frequently devastated by wildfire, i.e., Quercus pubescens (QP), Quercus suber (QS), Olea europaea (OE) and Genista Salzmannii needles (GSN), were studied. The TG-DTG curves have shown that the combustion process consists of two stages: devolatilization and char oxidation. The whole process was controlled by the release of volatile gases. According to the relative linearized (RL) index of spontaneous ignition, the samples were ordered as follows: OE > GSN ≥ QS > QP. OE appears to be the most reactive and prone to spontaneous ignition compared to the other samples. The same order was achieved for the combustion characteristic index and, approximately, for the integrated flammability. On the other hand, the average Ea at the low temperature stage of the combustion process was low for GSN (147 ± 9 kJ mol−1) and OE (159 ± 4 kJ mol−1) and high for QP (179 ± 14 kJ mol−1) and QS (174 ± 3 kJ mol−1). Finally, this work provides valuable insight into the relationship between chemical properties and combustion indices and the components that make some indices more effective than others.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. International Plant Name Index.

Abbreviations

BCI:

Burnout characteristic index (% min−4)

C:

Flammability (% min−1 °C−2)

CCI:

Combustion characteristic index (1 min−2 °C−3)

CSI:

Combustion stability index (% min−1 °C−2)

DIcom :

Devolatilization index for combustion (1 min−1 °C−2)

DDTG:

Second derivative mass loss (% min−2)

DTG:

Derivative of thermogravimetry (% min−1)

DTGmax :

Maximum combustion rate (% min−1)

DTGmean :

Mean combustion rate (% min−1)

DTGshoulder :

Combustion rate of shoulder (% min−1)

DTGpeak :

Combustion rate of peak (% min−1)

Ea :

Apparent activation energy (kJ mol−1)

FC:

Fixed carbon (mass%)

FWO:

Flynn–Wall–Ozawa

GSN:

Genista Salzmannii DC. Needles

HHV:

High heating value (MJ kg−1)

ICI:

Ignition characteristic index (% min−3)

ICTAC:

International confederation for thermal analysis and calorimetry

KAS:

Kissinger–Akahira–Sunose

LHV:

Low heating value (MJ kg−1)

M:

Mass loss in each stage

OE:

Olea europaea L.

QP:

Quercus pubescens Willd

QS:

Quercus suber L.

R:

Reactivity (% min−1 °C−1)

R devolatilization :

Reactivity during devolatilization stage (% min−1 °C−1)

R char oxidation :

Reactivity during char oxidation stage (% min−1 °C−1)

RL indices:

Relative linearized indices

S i :

Index of flammability in the stage i

SII:

Spontaneous ignition index

S n :

Integrated flammability

TGA or TG:

Thermogravimetric analysis

T b :

Burnout temperature (°C)

t b :

Corresponding time of Tb (min)

T DTGmax :

Corresponding temperature of DTGmax (°C)

t DTGmax :

Corresponding time of DTGmax (min)

T pi :

Pyrolysis initiation temperature (°C)

t pi :

Pyrolysis initiation time (min)

T peak :

Peak temperature (°C)

TR:

Temperature range

T shoulder :

Shoulder temperature (°C)

T υ :

Initial temperature of volatile release (°C)

t υ :

Corresponding time of Tυ (min)

VM:

Volatile matter (mass%)

α :

Conversion degree

β :

Heating rate (°C min−1)

\(\Delta T_{1/2}\) :

Temperature range at the half value of DTGmax (°C)

\(\Delta t_{1/2}\) :

Time range at the half value of DTGmax (min)

References

  1. Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DMJS. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun. 2015;6:1–11.

    Article  CAS  Google Scholar 

  2. González Martínez M, Dupont C, da Silva PD, Míguez-Rodríguez L, Grateau M, Thiéry S, Tamminen T, Meyer XM, Gourdon C. Assessing the suitability of recovering shrub biowaste involved in wildland fires in the South of Europe through torrefaction mobile units. J Environ Manage. 2019;236:551–60.

    Article  PubMed  Google Scholar 

  3. Scott AC, Bowman DM, Bond WJ, Pyne SJ, Alexander ME. Fire on earth: an introduction. New York: Wiley; 2014.

    Google Scholar 

  4. Abbas D, Current D, Ryans M, Taff S, Hoganson H, Brooks KN. Harvesting forest biomass for energy - an alternative to conventional fuel treatments: trials in the Superior National Forest, USA. Biomass Bioenerg. 2011;35:4557–64.

    Article  Google Scholar 

  5. Singh P. Potential of pine needle biomass as an alternative fuel to mitigate forest fire in Uttarakhand Himalayas - a review. J Agric Eng. 2022;58:192–203.

    Google Scholar 

  6. Jones JM, Saddawi A, Dooley B, Mitchell EJS, Werner J, Waldron DJ, Weatherston S, Williams A. Low temperature ignition of biomass. Fuel Process Technol. 2015;134:372–7.

    Article  CAS  Google Scholar 

  7. Armakan S, Civan M, Yurdakul S. Determining co-combustion characteristics, kinetics and synergy behaviors of raw and torrefied forms of two distinct types of biomass and their blends with lignite. J Therm Anal Calorim. 2022;147:12855–69.

    Article  CAS  Google Scholar 

  8. Meena MK, Anand S, Ojha DK. Interdependency of pyrolysis and combustion: a case study for lignocellulosic biomass. J Therm Anal Calorim. 2023;148:5509–19.

    Article  CAS  Google Scholar 

  9. Wnorowska J, Ciukaj S, Kalisz S. Thermogravimetric analysis of solid biofuels with additive under air atmosphere. Energies. 2021;14(8):2257.

    Article  CAS  Google Scholar 

  10. Paniagua Bermejo S, Prado-Guerra A, García Pérez AI, Calvo Prieto LF. Study of quinoa plant residues as a way to produce energy through thermogravimetric analysis and indexes estimation. Renew Energy. 2020;146:2224–33.

    Article  CAS  Google Scholar 

  11. Liu C, Liu J, Evrendilek F, Xie W, Kuo J, Buyukada M. Bioenergy and emission characterizations of catalytic combustion and pyrolysis of litchi peels via TG-FTIR-MS and Py-GC/MS. Renew Energy. 2020;148:1074–93.

    Article  CAS  Google Scholar 

  12. Zhang Y, Kang L, Li H, Huang X, Liu X, Guo L, et al. Characterization of moxa floss combustion by TG/DSC, TG-FTIR and IR. Bioresour Technol. 2019;288.

  13. El-Sayed SA, Ismail MA, Mostafa ME. Thermal decomposition and combustion characteristics of biomass materials using TG/DTG at different high heating rates and sizes in the air. Environ Prog Sustain Energy. 2019;38:1–14.

    Article  Google Scholar 

  14. Wang Q, Wang G, Zhang J, Lee JY, Wang H, Wang C. Combustion behaviors and kinetics analysis of coal, biomass and plastic. Thermochim Acta. 2018;669:140–8.

    Article  CAS  Google Scholar 

  15. Song Y, Liu J, Evrendilek F, Kuo J, Buyukada M. Combustion behaviors of Pteris vittata using thermogravimetric, kinetic, emission and optimization analyses. J Clean Prod. 2019;237: 117772.

    Article  CAS  Google Scholar 

  16. Liu X, Chen M, Yu D. Oxygen enriched co-combustion characteristics of herbaceous biomass and bituminous coal. Thermochim Acta. 2013;569:17–24.

    Article  CAS  Google Scholar 

  17. Zhang Z, Zhang H, Zhou D. Flammability characterisation of grassland species of Songhua Jiang-Nen Jiang Plain (China) using thermal analysis. Fire Saf J. 2011;46:283–8.

    Article  Google Scholar 

  18. Anderson HE. Forest fuel ignitibility. Fire Technol. 1970;6:312–9.

    Article  CAS  Google Scholar 

  19. Liodakis S, Kakardakis T. Measuring the particle flammability of forest species from wildland/urban interface (WUI) near athens by thermal analysis. In: 2006 1st international symposium environment identities Mediterranean area, ISEIM. 2006;24–8

  20. Xie T, Wei R, Wang Z, Wang J. Comparative analysis of thermal oxidative decomposition and fire characteristics for different straw powders via thermogravimetry and cone calorimetry. Process Saf Environ Prot. 2020;134:121–30.

    Article  CAS  Google Scholar 

  21. Manić N, Janković B, Stojiljković D, Radojević M, Somoza BC, Medić L. Self-ignition potential assessment for different biomass feedstocks based on the dynamic thermal analysis. Clean Eng Technol. 2021;2.

  22. Kumar Mohalik N, Mandal S, Kumar Ray S, Mobin Khan A, Mishra D, Krishna PJ. TGA/DSC study to characterise and classify coal seams conforming to susceptibility towards spontaneous combustion. Int J Min Sci Technol. 2022;32:75–88.

    Article  CAS  Google Scholar 

  23. Shu Y, Zhang J, Li W, Zhao P, Zhang Q, Zhou M. Thermogravimetric analysis of the pyrolysis and combustion kinetics of surface dead combustibles in the Daxing’an Mountains. PLoS ONE. 2021;16:1–16.

    Article  Google Scholar 

  24. Liu L, Pang Y, Lv D, Wang K, Wang Y. Thermal and kinetic analyzing of pyrolysis and combustion of self-heating biomass particles. Process Saf Environ Prot. 2021;151:39–50.

    Article  CAS  Google Scholar 

  25. García Torrent J, Ramírez-Gómez Á, Fernandez-Anez N, Medic Pejic L, Tascón A. Influence of the composition of solid biomass in the flammability and susceptibility to spontaneous combustion. Fuel. 2016;184:503–11.

    Article  Google Scholar 

  26. Mandal S, Mohalik NK, Ray SK, Khan AM, Mishra D, Pandey JK. A comparative kinetic study between TGA & DSC techniques using model-free and model-based analyses to assess spontaneous combustion propensity of Indian coals. Process Saf Environ Prot. 2022;159:1113–26.

    Article  CAS  Google Scholar 

  27. Jia J, Huang R, Wang Y. Study on the combustion characteristics of mountain forest vegetation. Forests. 2022;13.

  28. Fayad J, Morandini F, Accary G, Chatelon FJ, Wandon C, Burglin A, Rossi L, Marcelli T, Cancellieri D, Cancellieri V, Morvan D, Meradji S, Pieri A, Planelles G, Costantini R, Briot P, Rossi JL. A study of two high intensity fires across corsican shrubland. Atmosphere. 2023;14:1–21.

    Article  Google Scholar 

  29. Rahib Y, Leroy-Cancellieri V, Cancellieri D, Quilichini Y. Fire hazard analysis of Mediterranean Genista Salzmannii: pyrolysis and kinetic characterization. J Anal Appl Pyrolysis. 2022;168.

  30. Loo S V and Koppejan J. The handbook of biomass combustion and co-firing. Earthscan 2008. pp. 7–14.

  31. Yang J, Chen H, Zhao W, Zhou J. Combustion kinetics and emission characteristics of peat by using TG-FTIR technique. J Therm Anal Calorim. 2016;124:519–28.

    Article  CAS  Google Scholar 

  32. Rahib Y, Leroy-Cancellieri V, Cancellieri D, Awad C, Rossi J-L. Comprehensive characterization of pyrolysis and combustion of genista salzmannii needles (GSN) for fire hazard analysis. In: Advances in forest fire research, Viegas DX, Ribeiro LM, editors. 2022. 1430–36

  33. Sanchez ME, Otero M, Gómez X, Morán A. Thermogravimetric kinetic analysis of the combustion of biowastes. Renew Energy. 2009;34:1622–7.

    Article  CAS  Google Scholar 

  34. Rahib Y, Sarh B, Chaoufi J, Bonnamy S, Elorf A. Physicochemical and thermal analysis of argan fruit residues (AFRs) as a new local biomass for bioenergy production. J Therm Anal Calorim. 2021;145:2405–16.

    Article  CAS  Google Scholar 

  35. Rahib Y, Elorf A, Sarh B, Bonnamy S, Chaoufi J, Ezahri M. Experimental analysis on thermal characteristics of Argan nut shell (ANS) biomass as a green energy resource. Int J Renew Energy Res. 2019;9:1606–16015.

    Google Scholar 

  36. Reis JS, Araujo RO, Lima VMR, Queiroz LS, da Costa CEF, Pardauil JJR, Chaar JS, Filho GNR, de Souza LKC. Combustion properties of potential Amazon biomass waste for use as fuel. J Therm Anal Calorim. 2019;138:3535–9.

    Article  CAS  Google Scholar 

  37. Li J, Hu J, Wang T, Gan J, Xie J, Shui Y, Liu J, Xue Y. Thermogravimetric analysis of the co-combustion of residual petrochemical sludge and municipal sewage sludge. Thermochim Acta. 2019;673:60–7.

    Article  CAS  Google Scholar 

  38. Paniagua S, Calvo LF, Escapa C, Coimbra RN, Otero M, García AI. Chlorella sorokiniana thermogravimetric analysis and combustion characteristic indexes estimation. J Therm Anal Calorim. 2018;131:3139–49.

    Article  CAS  Google Scholar 

  39. Yi B, Chen M, Gao Y, Cao C, Wei Q, Zhang Z, Li L. Investigation on the co-combustion characteristics of multiple biomass and coal under O2/CO2 condition and the interaction between different biomass. J Environ Manage. 2023;325: 116498.

    Article  CAS  PubMed  Google Scholar 

  40. Huang C, Yu C, Wang G, Zhang J, Ning X, Wang C. Comparison of structural characteristics and combustibility analysis about hydrochar and pyrochar. J Therm Anal Calorim. 2022;147:10509–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang Y, Lu X, Wang Q. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis. Energy Convers Manag. 2017;136:99–107.

    Article  CAS  Google Scholar 

  42. Vamvuka D, El Chatib N, Sfakiotakis S. Measurements of ignition point and combustion characteristics of biomass fuels and their blends with lignite. Proc Eur Combust Meet. 2011;2015:95.

    Google Scholar 

  43. Ahn S, Choi G, Kim D. The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition. Biomass Bioenerg. 2014;71:144–54.

    Article  CAS  Google Scholar 

  44. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  45. Ben Abdallah A, Ben Hassen Trabelsi A, Navarro MV, Veses A, García T, Mihoubi D. Pyrolysis of tea and coffee wastes: effect of physicochemical properties on kinetic and thermodynamic characteristics. J Therm Anal Calorim. 2023;148:2501–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilk M, Magdziarz A, Gajek M, Zajemska M, Jayaraman K, Gokalp I. Combustion and kinetic parameters estimation of torrefied pine, acacia and Miscanthus giganteus using experimental and modelling techniques. Bioresour Technol. 2017;243:304–14.

    Article  CAS  PubMed  Google Scholar 

  47. Leroy V, Cancellieri D, Leoni E, Rossi JL. Kinetic study of forest fuels by TGA: model-free kinetic approach for the prediction of phenomena. Thermochim Acta. 2010;497:1–6.

    Article  CAS  Google Scholar 

  48. Wu KT, Tsai CJ, Chen CS, Chen HW. The characteristics of torrefied microalgae. Appl Energy. 2012;100:52–7.

    Article  CAS  Google Scholar 

  49. Du SW, Chen WH, Lucas JA. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection. Bioresour Technol. 2014;161:333–9.

    Article  CAS  PubMed  Google Scholar 

  50. Mukhopadhyay S, Sarkar P, Masto RE, Singh AK, Singh PK. Investigation on the combustion characteristics of different plant parts of Cassia siamea by DSC-TGA. J Therm Anal Calorim. 2022;147:3469–81.

    Article  CAS  Google Scholar 

  51. Deng S, Wang X, Tan H, Mikulčić H, Yang F, Li Z, et al. Thermogravimetric study on the co-combustion characteristics of oily sludge with plant biomass. Thermochim Acta. 2016;633:69–76.

    Article  CAS  Google Scholar 

  52. Xu F, Wang B, Yang D, Hao J, Qiao Y, Tian Y. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: pyrolysis behaviors and kinetic analysis. Energy Convers Manag. 2018;171:1106–15.

    Article  CAS  Google Scholar 

  53. Tian B, Qiao YY, Tian YY, Liu Q. Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG-FTIR. J Anal Appl Pyrolysis. 2016;121:376–86.

    Article  CAS  Google Scholar 

  54. Mureddu M, Dessì F, Orsini A, Ferrara F, Pettinau A. Air- and oxygen-blown characterization of coal and biomass by thermogravimetric analysis. Fuel. 2018;212:626–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Corsican Collectivity and the French state in the framework of the collaborative project GOLIAT (CPER: 40031).

Author information

Authors and Affiliations

Authors

Contributions

YR contributed to conceptualization, methodology, validation, investigation, formal analysis, writing—original draft, writing—review & editing, visualization. VLC contributed to conceptualization, methodology, validation, formal analysis, resources, writing—review & editing, visualization, project administration. DC contributed to conceptualization, methodology, validation, investigation, resources, writing—review & editing, visualization, project administration. JF contributed to investigation, formal analysis, validation. JLR contributed to investigation, formal analysis, validation. EL contributed to investigation, formal analysis, validation.

Corresponding author

Correspondence to Yassine Rahib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5206 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahib, Y., Leroy-Cancellieri, V., Cancellieri, D. et al. Study on the combustion indices of forest species using thermogravimetric analysis. J Therm Anal Calorim 148, 12919–12935 (2023). https://doi.org/10.1007/s10973-023-12557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12557-8

Keywords

Navigation