Skip to main content
Log in

Study of the acoustic response of a swirl/bluff-body stabilized natural gas flame: experimental aspects and theoretical rationale

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermo-acoustic stability of a combustor may be assessed in its design phase via solving an expression for the interior acoustic field with flame characteristics treated as an input. This input must include the flame response to axial upstream disturbances. Practical details of a response evaluation are expressed for the case of a premixed natural gas burner whose flame is stabilized by means of the combination of swirl and bluff-body. An equation for instability analysis in a gas turbine was derived incorporating a practically-measurable and applicable form of flame response. Velocity disturbances were monitored using a hot-film anemometer and chemiluminescence of heat-release fluctuations using a photomultiplier. The photomultiplier gain sensitivity to the angle of incidence of rays was first determined and taken into account. A method based on coincidence of time series was used to evaluate phase difference between two signals. It was found that the geometry of the settling chamber along with the location of the speakers causes the excitability of the acoustic field experience a sharp peak at 300 Hz which relates to the first natural mode of the chamber. The magnitude of the flame describing function assumes values from nearly zero up to 2.7 depending on frequency and excitation level while the phase depends on frequency only. For the case of the excitations that cause noticeable responses, the ratio of the acoustic wavelengths to the flame length is higher than 30, which shows that a global response for the whole flame instead of a field function may be assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

c :

Sound speed, m s1

f :

Frequency, Hz

G :

Describing function magnitude

p :

Pressure, Pa

q :

Heat-release-rate, W m3

Q :

Total heat-release-rate, W

t :

Time, s

u :

Velocity, m s1

V :

Volume, m3

x :

Position, m

γ :

Isentropic constant

ρ :

Density, kg m3

Φ :

Describing function phase, rad

ω :

Angular frequency, rad s1

1:

Velocity measurement location

a:

Axial

f:

Flame

tot:

Flame total

References

  1. Lefebvre AH, Ballal DR. Gas turbine combustion. CRC Press; 2010. https://doi.org/10.1201/9781420086058.

    Book  Google Scholar 

  2. Dunn-Rankin D. Lean combustion: technology and control. Academic Press; 2008.

  3. Lieuwen T, Yang V. Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms and modeling. American Institute of Aeronautics and Astronautics; 2005.

  4. Avdonin A, Meindl M, Polifke W. Thermoacoustic analysis of a laminar premixed flame using a linearized reactive flow solver. Proc Combust Inst. 2019;37(4):5307–14.

    Article  CAS  Google Scholar 

  5. Guo S, Silva CF, Ghani A, Polifke W. Quantification and propagation of uncertainties in identification of flame impulse response for thermoacoustic stability analysis. J Eng Gas Turbines Power. 2019;141(2):021032–110.

    Article  Google Scholar 

  6. Li Q, Dong F, Liu P. A numerical study on the acoustic forcing of a laminar premixed saturated spray flame. J Therm Anal Calorim. 2020;139:2899–912.

    Article  CAS  Google Scholar 

  7. Dowling AP, Stow SR. Acoustic analysis of gas turbine combustors. J Propul Power. 2003;19(5):751–65.

    Article  Google Scholar 

  8. Huang Y, Yang V. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci. 2009;35:293–364.

    Article  CAS  Google Scholar 

  9. Poinsot T. Veynante D. Theoretical and numerical combustion. Edwards; 2001.

  10. Silva CF, Nicoud F, Schuller T, Durox D, Candel S. Combining a helmholtz solver with the flame describing function to assess combustion instability in a premixed swirled combustor. Combust Flame. 2013;160:1743–54.

    Article  CAS  Google Scholar 

  11. Palies P, Durox D, Schuller T, Candel S. Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames. Combust Flame. 2011;158:1980–91.

    Article  CAS  Google Scholar 

  12. Han X, Morgans AS. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver. Combust Flame. 2015;162:1778–92.

    Article  CAS  Google Scholar 

  13. Behzadi M, Farshchi M. Numerical investigation of laminar premixed conical flame response to acoustic excitation. J Space Sci Technol. 2015;8(1):9–18 (in Persian).

    Google Scholar 

  14. O’Connor J, Acharya V, Lieuwen T. Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes. Prog Energy Combust Sci. 2015;49:1–39.

    Article  Google Scholar 

  15. Smith T, Emerson B, Proscia W, Lieuwen T. Role of induced axial acoustics in transverse acoustic flame response. Combust Flame. 2018;195:140–50.

    Article  Google Scholar 

  16. Oberleithner K, Schimek S, Paschereit CO. Shear flow instabilities in swirl-stabilized combustors and their impact on the amplitude dependent flame response: a linear stability analysis. Combust Flame. 2015;162:86–99.

    Article  CAS  Google Scholar 

  17. Kim D, Park SW. Forced and self-excited oscillations in a natural gas fired lean premixed combustor. Fuel Process Technol. 2010;91:1670–7.

    Article  CAS  Google Scholar 

  18. Paschereit CO, Schuermans B, Polifke W, Mattson O. Measurement of transfer matrices and source terms of premixed flames. J Eng Gas Turbines Power. 2002;124:239–47.

    Article  Google Scholar 

  19. Cosic B, Terhaar S, Moeck JP, Paschereit CO. Response of a swirl-stabilized flame to simultaneous perturbations in equivalence ratio and velocity at high oscillation amplitudes. Combust Flame. 2015;162:1046–62.

    Article  CAS  Google Scholar 

  20. Ghani A, Albayrak A. From pressure time series data to flame transfer functions: a framework for perfectly premixed swirling flames. J Eng Gas Turbines Power. 2023;145(1):011005–9.

    Google Scholar 

  21. Docquier N, Candel S. Combustion control and sensors: a review. Prog Energy Combust Sci. 2002;28:107–50.

    Article  CAS  Google Scholar 

  22. Shen W, Xing C, Liu L, Hu Q, Wu G, Yang Y, Wu S, Qiu P, Wu J. Chemiluminescence-based characterization of heat release rate dynamic in a micro gas turbine combustion chamber. J Energy Inst. 2022;102:32–41.

    Article  CAS  Google Scholar 

  23. Karimi N, Brear MJ, Jin SH, Monty P. Linear and non-linear forced response of a conical, ducted, laminar premixed flame. Combust Flame. 2009;156:2201–12.

    Article  CAS  Google Scholar 

  24. Malaczynski G, Roth G, Johnson D. Ion-sense-based real-time combustion sensing for closed loop engline control. SAE Int J Engines. 2013;6:267–77.

    Article  Google Scholar 

  25. Mehta GK, Ramachandra MK, Strahle WC. Correlations between Light Emission, acoustic emission and ion density in premixed turbulent flames. Symp Combust. 1981;18(1):1051–9. https://doi.org/10.1016/S0082-0784(81)80109-9.

    Article  Google Scholar 

  26. Higgins B, McQuay MQ, Lacas F, Rolon JC, Darabiha N, Candel S. Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames. Fuel. 2001;80:67–74.

    Article  CAS  Google Scholar 

  27. Higgins B, McQuay MQ, Lacas F, Candel S. An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames. Fuel. 2001;80:1583–91.

    Article  CAS  Google Scholar 

  28. Arghode VK, Khalil AEE, Gupta AK. Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor. Appl Energy. 2012;95:132–8.

    Article  CAS  Google Scholar 

  29. Moeck JP, Oevermann M, Klein R, Paschereit CO, Schmidt H. A two-way coupling for modeling thermoacoustic instabilities in a flat flame Rijke tube. Proc Combust Inst. 2009;32:1199–207.

    Article  CAS  Google Scholar 

  30. Swain W, Yejun W, Parajuli P, Hay M, Saylam A, Dreier T, Schulz C, Kulatilaka W. Characterization of a high-pressure flame facility using high-speed chemiluminescence and OH LIF imaging. Exp Fluids. 2023;64:71.

    Article  Google Scholar 

  31. Kim KT, Lee JG, Quay BD, Santavicca DA. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations. Combust Flame. 2010;157:1731–44.

    Article  CAS  Google Scholar 

  32. Sjoholm J, Rosell J, Li B, Richter M, Li Z, Bai XS, Alden M. Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proc Combust Inst. 2013;34:1475–82.

    Article  Google Scholar 

  33. Xavier P, Vandel A, Godard G, Renou B, Grisch F, Cabot G, Boukhalfa MA, Cazalens M. Analysis of the flame structure in a trapped vortex combustor using low and high-speed OH-PLIF. ASME Turbo Expo. 2014;4:25207–10.

    Google Scholar 

  34. Dhanuka S, Temme JE, Driscoll JF. Unsteady aspects of lean premixed prevaporized gas turbine combustors: Flame–flame Interactions. J Propul Power. 2011;27(3):631–41.

    Article  CAS  Google Scholar 

  35. Seybert AF. Two-sensor methods for the measurement of sound intensity and acoustic properties in ducts. J Acoustical Soc Am. 1988;83(6):2233–9.

    Article  Google Scholar 

  36. Balachandran R, Ayoola BO, Kaminski CF, Dowling AP, Mastorakos E. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust Flame. 2005;143:37–55.

    Article  CAS  Google Scholar 

  37. Birbaud AL, Durox D, Candel S. Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations. Combusion and Flame. 2006;146:541–52.

    Article  CAS  Google Scholar 

  38. Rao Z, Li R, Zhao P, Wang B, Zhao D, Xie Q. Similarity phenomena of lean swirling flames at different bulk velocities with acoustic disturbances. Chin J Aeronaut. 2023;36(5):18–32.

    Article  Google Scholar 

  39. Palies P, Schuller T, Durox D, Candel S. Modeling of premixed swirling flames transfer functions. Proc Combust Inst. 2011;33:2967–74.

    Article  CAS  Google Scholar 

  40. Han Z, Hochgreb S. The response of stratified swirling flames to acoustic forcing: experiments and comparison to model. Proc Combust Inst. 2015;35:3309–15.

    Article  CAS  Google Scholar 

  41. Liu W, Xue R, Zhang L, Yang Q, Wang H. Dynamic response of a forced low-swirl premixed flame with acoustic excitation. Flow Turbulence Combust. 2021;108:1139–57.

    Article  Google Scholar 

  42. Æsøy E, Nygård T, Worth NA, Dawson JR. Tailoring the gain and phase of the flame transfer function through targeted convective-acoustic interference. Combust Flame. 2022;236:111813–4.

    Article  Google Scholar 

  43. Gatti M, Gaudron R, Mirat C, Zimmer L, Schuller T. Impact of swirl and bluff-body on the transfer function of premixed flames. Proc Combust Inst. 2019;37(4):5197–204.

    Article  CAS  Google Scholar 

  44. Yang Y, Wang G, Wu H, Zhu Z, Ma C, Li J. Investigation of flame and flow response in the swirler with different divergence cups and central body under external excitation. Phys Fluids. 2023;35:064102.

    Article  CAS  Google Scholar 

  45. Behzadi M, Siyadat SH, Ommi F, Saboohi Z. Study of the effect of bluff body size on stability limits of a premixed natural gas swirl burner. J Therm Anal Calorim. 2022;147:1583–96.

    Article  CAS  Google Scholar 

  46. Shahsavari M, Farshchi M, Chakravarthy SR, Chakraborty A, Aravind IB, Wang B. Low swirl premixed methane-air flame dynamics under acoustic excitations. Phys Fluids. 2019;31:095106.

    Article  Google Scholar 

  47. Behzadi M, Ahmadi MH, Ommi F. Hot-wire/hot-film calibration for low velocities using image processing. Sci Iran B. 2021;28(1):265–72.

    Google Scholar 

  48. Polifke W. Modeling and analysis of premixed flame dynamics by means of distributed time delays. Prog Energ Combust Sci. 2020;79:100845.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization, investigation, formal analysis, methodology, and writing were performed by MB. EM supervised the research. Project administration were done by FO. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Behzadi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behzadi, M., Movahednejad, E. & Ommi, F. Study of the acoustic response of a swirl/bluff-body stabilized natural gas flame: experimental aspects and theoretical rationale. J Therm Anal Calorim 148, 12877–12890 (2023). https://doi.org/10.1007/s10973-023-12541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12541-2

Keywords

Navigation