Skip to main content
Log in

Synthesis and thermal performance of nano-sized paraffin-based titania encapsulated PCMs via sol–gel method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Paraffin- and titania (TiO2)-based nano-encapsulated phase change materials (NePCMs) were synthesized by the sol–gel process to improve thermal as well as phase change performance. Nine different samples of NePCMs were prepared by varying core/shell mass ratios, and their effect was investigated on thermal performance. The paraffin/TiO2 nanocapsules were characterized by Fourier transform infrared spectrophotometer (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and dynamic light scattering (DLS). The characterization techniques confirmed that the paraffin was successfully contained in the TiO2 shell. The maximum effective melting (73.47 Jg−1) and solidification (71.87 Jg−1) latent heat for the NePCMs were found to be at a 52.33% encapsulation ratio. The mean size of the NePCMs was approximately 238 nm measured from DLS. The thermal properties of the same sample stayed almost the same even after 100 thermal cycles validated by the differential scanning calorimetry (DSC) curves, and thermal stability was evaluated by a thermogravimetric analyzer (TGA).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data and code availability

Not applicable.

Abbreviations

e:

Encapsulation efficiency

r :

Encapsulation ratio

\(\Delta H_{{\text{m,NePCM}}}\) :

Melting latent heat of the nano-encapsulated phase change material

\(\Delta H_{{\text{m,PCM}}}\) :

Melting latent heat of the bulk phase change material

NePCMs:

Nano-encapsulated phase change materials

PCMs:

Phase change materials

SiO2 :

Silica

SDS:

Sodium dodecyl sulfate

\(\Delta H_{{\text{s,NePCM}}}\) :

Solidification latent heat of the nano-encapsulated phase change material

\(\Delta H_{{\text{s,PCM}}}\) :

Solidification latent heat of the bulk phase change material

TiO2 :

Titania

TBT:

Tetrabutyl orthotitanate

References

  1. Fleischer A.S. Thermal energy storage using phase change materials: fundamentals and applications. 2015: Springer.

  2. Jamekhorshid A, Sadrameli S, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev. 2014;31:531–42.

    Article  CAS  Google Scholar 

  3. Faghiri S, et al. The impingement of liquid boiling droplet onto a molten phase change material as a direct-contact solidification method. Thermal Sci Eng Progress. 2021;23: 100888.

    Article  CAS  Google Scholar 

  4. Faghiri S, et al. Multi-objective optimization of multiple droplet impacts on a molten PCM using NSGA-II optimizer and artificial neural network. Sci Rep. 2023;13(1):10543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Poureslami P., Faghiri S, Shafii, M. B. Simultaneous double droplet impact on a molten phase change material pool: An experimental investigation. Phys Fluids. 2023;35(2).

  6. Alkan C, Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Convers Manage. 2011;52(1):687–92.

    Article  CAS  Google Scholar 

  7. Keyan K., et al., Microencapsulation of PCMs in textiles: a review. J Textile Apparel Technol Manage. 2012;7(3).

  8. Su J-F, et al. Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage. Energy Convers Manage. 2012;55:101–7.

    Article  CAS  Google Scholar 

  9. Li W, et al. Nano-encapsulated phase change material slurry (Nano-PCMS) saturated in metal foam: a new stable and efficient strategy for passive thermal management. Energy. 2018;165:743–51.

    Article  CAS  Google Scholar 

  10. Ho C, et al. Forced convection heat transfer of Nano-Encapsulated Phase Change Material (NEPCM) suspension in a mini-channel heatsink. Int J Heat Mass Transf. 2020;155: 119858.

    Article  CAS  Google Scholar 

  11. Li J, et al. Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2009;93(10):1761–7.

    Article  CAS  Google Scholar 

  12. Pan L, et al. Preparation, characterization and thermal properties of micro-encapsulated phase change materials. Sol Energy Mater Sol Cells. 2012;98:66–70.

    Article  CAS  Google Scholar 

  13. Qiu X, et al. Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage. Energy. 2012;46(1):188–99.

    Article  CAS  Google Scholar 

  14. Li W, et al. Composition and characterization of thermoregulated fiber containing acrylic-based copolymer microencapsulated phase-change materials (MicroPCMs). Ind Eng Chem Res. 2014;53(13):5413–20.

    Article  CAS  Google Scholar 

  15. Li B, et al. Fabrication and properties of microencapsulated paraffin@ SiO2 phase change composite for thermal energy storage. ACS Sustain Chem Eng. 2013;1(3):374–80.

    Article  CAS  Google Scholar 

  16. Salunkhe PB, Shembekar PS. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev. 2012;16(8):5603–16.

    Article  CAS  Google Scholar 

  17. Sánchez-Silva L, et al. Poly (urea-formaldehyde) microcapsules containing commercial paraffin: in situ polymerization study. Colloid Polym Sci. 2018;296(9):1449–57.

    Article  Google Scholar 

  18. Shi J, et al. Nano-encapsulated phase change materials prepared by one-step interfacial polymerization for thermal energy storage. Mater Chem Phys. 2019;231:244–51.

    Article  CAS  Google Scholar 

  19. Hawlader M, Uddin M, Khin MM. Microencapsulated PCM thermal-energy storage system. Appl Energy. 2003;74(1–2):195–202.

    Article  CAS  Google Scholar 

  20. Zhang H, Wang X, Wu D. Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J Colloid Interface Sci. 2010;343(1):246–55.

    Article  PubMed  CAS  Google Scholar 

  21. Ji W, et al. Self-assembly fabrication of GO/TiO2@ paraffin microcapsules for enhancement of thermal energy storage. Powder Technol. 2021;385:546–56.

    Article  CAS  Google Scholar 

  22. Ishak S, et al. Effect of core-shell ratio on the thermal energy storage capacity of SiO2 encapsulated lauric acid. J Energy Storage. 2021;42: 103029.

    Article  Google Scholar 

  23. Wang H, et al. Novel synthesis of silica coated palmitic acid nanocapsules for thermal energy storage. J Energy Storage. 2020;30: 101402.

    Article  Google Scholar 

  24. Ishak S, et al. Microencapsulation of stearic acid with SiO2 shell as phase change material for potential energy storage. Sci Rep. 2020;10(1):1–15.

    Article  Google Scholar 

  25. Ghufran M, Huitink D. Synthesis of nano-size paraffin/silica-based encapsulated phase change materials of high encapsulation ratio via sol–gel method. J Mater Sci. 2023;1–17.

  26. Genc M, Karagoz Genc Z. Microencapsulated myristic acid–fly ash with TiO2 shell as a novel phase change material for building application. J Thermal Anal Calorimetry. 2018;131(3):2373–80.

  27. Zhao L, et al. Fabrication and properties of microencapsulated n-octadecane with TiO2 shell as thermal energy storage materials. Sol Energy. 2016;127:28–35.

    Article  CAS  Google Scholar 

  28. Fan X, et al. Full-spectrum light-driven phase change microcapsules modified by CuS-GO nanoconverter for enhancing solar energy conversion and storage capability. Sol Energy Mater Sol Cells. 2021;223: 110937.

    Article  CAS  Google Scholar 

  29. Fan X, et al. Fabrication and characteristics of solar-driven phase change microcapsules with crystalline TiO2/CuS hybrid shell for solar energy conversion and storage. J Mater Res. 2020;35(16):2126–37.

    Article  CAS  Google Scholar 

  30. Li C, et al. Synthesis of microencapsulated stearic acid with amorphous TiO2 as shape-stabilized PCMs for thermal energy storage. Energy Procedia. 2018;152:390–4.

    Article  CAS  Google Scholar 

  31. Latibari ST, et al. Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method. Energy. 2015;85:635–44.

    Article  Google Scholar 

  32. Rudyak VY, Minakov A, Pryazhnikov M. Thermal properties of nanofluids and their similarity criteria. Tech Phys Lett. 2017;43:23–6.

    Article  CAS  Google Scholar 

  33. Li M, Liu J, Shi J. Synthesis and properties of phase change microcapsule with SiO2-TiO2 hybrid shell. Sol Energy. 2018;167:158–64.

    Article  CAS  Google Scholar 

  34. Latibari ST, et al. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. Energy. 2013;61:664–72.

    Article  Google Scholar 

  35. Yuan H, et al. Effect of alkaline pH on formation of lauric acid/SiO2 nanocapsules via sol-gel process for solar energy storage. Sol Energy. 2019;185:374–86.

    Article  CAS  Google Scholar 

  36. Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage. Sol Energy Mater Sol Cells. 2009;93(5):571–6.

    Article  Google Scholar 

  37. Sarı A, et al. Microencapsulated n-octacosane as phase change material for thermal energy storage. Sol Energy. 2009;83(10):1757–63.

    Article  Google Scholar 

  38. Zhang H, Wang X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol Energy Mater Sol Cells. 2009;93(8):1366–76.

    Article  CAS  Google Scholar 

  39. Dhivya S, et al. Experimental study on microcapsules of Ag doped ZnO nanomaterials enhanced Oleic-Myristic acid eutectic PCM for thermal energy storage. Thermochim Acta. 2019;671:70–82.

    Article  CAS  Google Scholar 

  40. Ma X, et al. Synthesis and characterization of microencapsulated paraffin with TiO2 shell as thermal energy storage materials. J Mater Sci Mater Electron. 2018;29(17):15241–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Mourad Benamara at the University of Arkansas to help in the testing of the samples.

Author information

Authors and Affiliations

Authors

Contributions

MG helped in conceptualization, investigation, experimentation, writing—original draft, and visualization. DH contributed to writing—review and editing, supervision, and resources.

Corresponding author

Correspondence to David Huitink.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghufran, M., Huitink, D. Synthesis and thermal performance of nano-sized paraffin-based titania encapsulated PCMs via sol–gel method. J Therm Anal Calorim 148, 11629–11640 (2023). https://doi.org/10.1007/s10973-023-12519-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12519-0

Keywords

Navigation