Skip to main content
Log in

Thermal analysis of rubber concrete under the effect of two heat treatments: shock temperature and standard fire

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to know the advantages of using environmentally friendly materials in construction, namely, aggregates from tire recycling, this study aims to develop a numerical and mathematical model in order to analyze the thermal behavior of concrete on the basis of rubber aggregates as a function of time. The main goal of this paper is to look at how the heat shock temperature of 800 °C and the conditions of exposure to the ISO 834 standard fire affect the thermal behavior of concrete with different amounts of rubber (0%, 10%, 20%, and 30%) and constant humidity (3%). The results obtained show that for all mixtures, the temperature propagated in the sample decreases at different rates depending on the content of rubber aggregates. This reduction is mainly due to the decrease in the ability of the material to transfer heat and the increase in the thermal capacity that must be given to the material to increase its temperature. Statistics, frequency distributions, contours, and 3D views have all shown that the numerical model developed works. This makes the model an important tool and a good way to describe how concretes behave when heated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Rahgozar MA, Saberian M. Geotechnical properties of peat soil stabilised with shredded waste tyre chips. Mires Peat. 2016;18:1–12. https://doi.org/10.19189/MaP.2015.OMB.205.

    Article  Google Scholar 

  2. Saberian M, Mehrinejad Khotbehsara M, Jahandari S, Vali R, Li J. Experimental and phenomenological study of the effects of adding shredded tire chips on geotechnical properties of peat. Int J Geotech Eng. 2018;12:347–56. https://doi.org/10.1080/19386362.2016.1277829.

    Article  CAS  Google Scholar 

  3. Li J, Saberian M, Nguyen BT. Effect of crumb rubber on the mechanical properties of crushed recycled pavement materials. J Environ Manag. 2018;218:291–9. https://doi.org/10.1016/j.jenvman.2018.04.062.

    Article  Google Scholar 

  4. Turatsinze A, Garros M. On the modulus of elasticity and strain capacity of self-compacting concrete incorporating rubber aggregates. Resour Conserv Recycl. 2008;52:1209–15. https://doi.org/10.1016/j.resconrec.2008.06.012.

    Article  Google Scholar 

  5. Grinys A, Sivilevičius H, Pupeikis D, Ivanauskas E. Fracture of concrete containing crumb rubber. J Civ Eng Manag. 2013;19:447–55. https://doi.org/10.3846/13923730.2013.782335.

    Article  Google Scholar 

  6. Siddique R, Naik TR. Properties of concrete containing scrap-tire rubber—an overview. Waste Manag. 2004;24:563–9. https://doi.org/10.1016/j.wasman.2004.01.006.

    Article  PubMed  CAS  Google Scholar 

  7. Nematzadeh M, Shahmansouri AA, Fakoor M. Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: optimization and prediction via RSM and GEP. Constr Build Mater. 2020;252:119057. https://doi.org/10.1016/j.conbuildmat.2020.119057.

    Article  CAS  Google Scholar 

  8. Gesoglu M, Güneyisi E, Hansu O, İpek S, Asaad DS. Influence of waste rubber utilization on the fracture and steel–concrete bond strength properties of concrete. Constr Build Mater. 2015;101:1113–21. https://doi.org/10.1016/j.conbuildmat.2015.10.030.

    Article  Google Scholar 

  9. Nematzadeh M, Mousavimehr M. Residual compressive stress-strain relationship for hybrid recycled PET–crumb rubber aggregate concrete after exposure to elevated temperatures. J Mater Civ Eng. 2019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002749.

    Article  Google Scholar 

  10. Khaloo AR, Dehestani M, Rahmatabadi P. Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Manag. 2008;28:2472–82. https://doi.org/10.1016/j.wasman.2008.01.015.

    Article  PubMed  CAS  Google Scholar 

  11. Mousavimehr M, Nematzadeh M. Predicting post-fire behavior of crumb rubber aggregate concrete. Constr Build Mater. 2019;229:116834. https://doi.org/10.1016/j.conbuildmat.2019.116834.

    Article  Google Scholar 

  12. Gupta T, Chaudhary S, Sharma RK. Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. J Clean Prod. 2016;112:702–11. https://doi.org/10.1016/j.jclepro.2015.07.081.

    Article  CAS  Google Scholar 

  13. Tortum A, Çelik C, Cüneyt Aydin A. Determination of the optimum conditions for tire rubber in asphalt concrete. Build Environ. 2005;40:1492–504. https://doi.org/10.1016/j.buildenv.2004.11.013.

    Article  Google Scholar 

  14. Abed M, Nemes R, Lublóy É. The impact of time on the heat resistance of self-compacting high-performance concrete incorporated with recycled martials. J Therm Anal Calorim. 2019;138:35–45. https://doi.org/10.1007/s10973-019-08263-z.

    Article  CAS  Google Scholar 

  15. Ling T-C. Prediction of density and compressive strength for rubberized concrete blocks. Constr Build Mater. 2011;25:4303–6. https://doi.org/10.1016/j.conbuildmat.2011.04.074.

    Article  Google Scholar 

  16. Wong S-F, Seng-Kiong T. Use of recycled rubber tires in normal and high-strength concretes. ACI Mater J. 2009. https://doi.org/10.14359/56652.

    Article  Google Scholar 

  17. Gesoğlu M, Güneyisi E. Permeability properties of self-compacting rubberized concretes. Constr Build Mater. 2011;25:3319–26. https://doi.org/10.1016/j.conbuildmat.2011.03.021.

    Article  Google Scholar 

  18. Najim KB, Hall MR. Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Constr Build Mater. 2012;27:521–30. https://doi.org/10.1016/j.conbuildmat.2011.07.013.

    Article  Google Scholar 

  19. Zhang F, Hu C. The research for crumb rubber/waste plastic compound modified asphalt. J Therm Anal Calorim. 2016;124:729–41. https://doi.org/10.1007/s10973-015-5198-4.

    Article  CAS  Google Scholar 

  20. Li M, Qian C, Sun W. Mechanical properties of high-strength concrete after fire. Cem Concr Res. 2004;34:1001–5. https://doi.org/10.1016/j.cemconres.2003.11.007.

    Article  CAS  Google Scholar 

  21. Holan J, Novák J, Müller P, Štefan R. Experimental investigation of the compressive strength of normal-strength air-entrained concrete at high temperatures. Constr Build Mater. 2020;248:118662. https://doi.org/10.1016/j.conbuildmat.2020.118662.

    Article  Google Scholar 

  22. Li W, Chen B, Wang T. Seismic performance of concrete-filled double-skin steel tubes after exposure to fire: Analysis. J Constr Steel Res. 2019;162:105753. https://doi.org/10.1016/j.jcsr.2019.105753.

    Article  Google Scholar 

  23. Li L-J, Xie W-F, Liu F, Guo Y-C, Deng J. Fire performance of high-strength concrete reinforced with recycled rubber particles. Mag Concr Res. 2011;63:187–95. https://doi.org/10.1680/macr.8.00140.

    Article  CAS  Google Scholar 

  24. Menéndez E, Vega L, Andrade C. Use of decomposition of portlandite in concrete fire as indicator of temperature progression into the material. J Therm Anal Calorim. 2012;110:203–9. https://doi.org/10.1007/s10973-011-2159-4.

    Article  CAS  Google Scholar 

  25. Arioz O. Effects of elevated temperatures on properties of concrete. Fire Saf J. 2007;42:516–22. https://doi.org/10.1016/j.firesaf.2007.01.003.

    Article  CAS  Google Scholar 

  26. Khoury GA. Effect of fire on concrete and concrete structures. Prog Struct Eng Mater. 2000;2:429–47. https://doi.org/10.1002/pse.51.

    Article  Google Scholar 

  27. Schneider U. Concrete at high temperatures—a general review. Fire Saf J. 1988;13:55–68. https://doi.org/10.1016/0379-7112(88)90033-1.

    Article  CAS  Google Scholar 

  28. Lawrence AM, Tia M, Ferraro CC, Bergin M. Effect of early age strength on cracking in mass concrete containing different supplementary cementitious materials: experimental and finite-element investigation. J Mater Civ Eng. 2012;24:362–72. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000389.

    Article  CAS  Google Scholar 

  29. Eric Ayotte BM, Houde Jules GV. Modeling the thermal stresses at early ages in a concrete monolith. ACI Mater J. 1997. https://doi.org/10.14359/342.

    Article  Google Scholar 

  30. Wu S, Huang D, Lin F-B, Zhao H, Wang P. Estimation of cracking risk of concrete at early age based on thermal stress analysis. J Therm Anal Calorim. 2011;105:171–86. https://doi.org/10.1007/s10973-011-1512-y.

    Article  CAS  Google Scholar 

  31. Nobuhiro M, Kazuo U. Nonlinear thermal stress analysis of a massive concrete structure. Comput Struct. 1987;26:287–96. https://doi.org/10.1016/0045-7949(87)90259-8.

    Article  Google Scholar 

  32. Waller V, D’Aloı̈a L, Cussigh F, Lecrux S. Using the maturity method in concrete cracking control at early ages. Cem Concr Compos. 2004;26:589–99. https://doi.org/10.1016/S0958-9465(03)00080-5.

    Article  CAS  Google Scholar 

  33. Służalec A. A new finite element approach to heat flow analysis in 3D developable structures. J Therm Anal. 1985;30:1063–9. https://doi.org/10.1007/BF02108537.

    Article  Google Scholar 

  34. Yikici TA, Chen H-L. Numerical prediction model for temperature development in mass concrete structures. Transp Res Rec J Transp Res Board. 2015;2508:102–10. https://doi.org/10.3141/2508-13.

    Article  Google Scholar 

  35. Ballim Y. A numerical model and associated calorimeter for predicting temperature profiles in mass concrete. Cem Concr Compos. 2004;26:695–703. https://doi.org/10.1016/S0958-9465(03)00093-3.

    Article  CAS  Google Scholar 

  36. Sućeska M. A computer program based on finite difference method for studying thermal initiation of explosives. J Therm Anal Calorim. 2002;68:865–75. https://doi.org/10.1023/A:1016178119729.

    Article  Google Scholar 

  37. Yikici TA, Chen RHL. 2D modeling temperature development of mass concrete structures at early age. In: Hordijk DA, Luković M, editors. High tech concrete: where technology and engineering meet. Cham: Springer; 2018. p. 612–20. https://doi.org/10.1007/978-3-319-59471-2_73.

    Chapter  Google Scholar 

  38. Afzal A, Saleel CA, Prashantha K, Bhattacharyya S, Sadhikh M. Parallel finite volume method-based fluid flow computations using OpenMP and CUDA applying different schemes. J Therm Anal Calorim. 2021;145:1891–909. https://doi.org/10.1007/s10973-021-10637-1.

    Article  CAS  Google Scholar 

  39. Kucherenko S, Pan J, Yeomans JA. A combined finite element and finite difference scheme for computer simulation of microstructure evolution and its application to pore–boundary separation during sintering. Comput Mater Sci. 2000;18:76–92. https://doi.org/10.1016/S0927-0256(00)00089-6.

    Article  Google Scholar 

  40. Do TA, Chen HL, Leon G, Nguyen TH. A combined finite difference and finite element model for temperature and stress predictions of cast-in-place cap beam on precast columns. Constr Build Mater. 2019;217:172–84. https://doi.org/10.1016/j.conbuildmat.2019.05.019.

    Article  Google Scholar 

  41. Do TA, Lawrence AM, Tia M, Bergin MJ. Effects of thermal conductivity of soil on temperature development and cracking in mass concrete footings. J Test Eval. 2015;43:20140026. https://doi.org/10.1520/JTE20140026.

    Article  Google Scholar 

  42. Zhao Z. Numerical modeling and simulation of heat transfer and fluid flow in a two-dimensional sudden expansion model using porous insert behind that. J Therm Anal Calorim. 2020;141:1933–42. https://doi.org/10.1007/s10973-020-09505-1.

    Article  CAS  Google Scholar 

  43. Benaicha M. Formulation des différents bétons (BAP, BHP et BFUP) à haute teneur en additions minérales: optimisation pour améliorer le coulage, la résistance au jeune âge et la durabilité des bétons. AMU; 2013.

  44. Benaicha M, Belcaid A, Alaoui AH, Jalbaud O, Burtschell Y. Rheological characterization of self-compacting concrete: new recommendation. Struct Concr. 2019;20:1695–701. https://doi.org/10.1002/suco.201900154.

    Article  Google Scholar 

  45. Benaicha M, et al. Rheological and mechanical characterization of fiber-reinforced self-compacting concrete. Int J Eng Innov Technol. 2013;2:151–95.

    Google Scholar 

  46. Benaicha M, Jalbaud O, Hafidi Alaoui A, Burtschell Y. Porosity effects on rheological and mechanical behavior of self-compacting concrete. J Build Eng. 2022;48:103964. https://doi.org/10.1016/j.jobe.2021.103964.

    Article  Google Scholar 

  47. El Marzak M, Karim Serroukh H, Benaicha M, Hafidi Alaoui A, Burtschell Y. Analysis of the thermal behavior of rubber concrete at elevated temperatures based on the humidity levels: numerical and mathematical modeling. Adv Eng Softw. 2022;172:103182. https://doi.org/10.1016/j.advengsoft.2022.103182.

    Article  Google Scholar 

  48. El Marzak M, Ben Aicha M, Lamrani B, Alaoui AH. Analysis of the heat transfer time in rubber aggregate concrete as a function of humidity percentage at very high temperature. Mater Today Proc. 2022;57:786–92. https://doi.org/10.1016/j.matpr.2022.02.354.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by MEM, HKS, and MB. The first draft of the manuscript was written by MEM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mouhcine Benaicha or Jianguo Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Marzak, M., Karim Serroukh, H., Benaicha, M. et al. Thermal analysis of rubber concrete under the effect of two heat treatments: shock temperature and standard fire. J Therm Anal Calorim 148, 11535–11548 (2023). https://doi.org/10.1007/s10973-023-12513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12513-6

Keywords

Navigation