Skip to main content

Advertisement

Log in

Constant rate thermal analysis study of a trihydrate calcium atorvastatin and effect of grinding on its thermal stability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The pathways of dehydration reaction of both calcium atorvastatin trihydrate (CAT) and grinded CAT were investigated using CRTA technique under controlled residual water vapor pressure of 5 hPa using complementary analysis techniques, namely TG, DSC and XRD. The results show that the studied sample is a pure atorvastatin in its trihydrated form and that, under CRTA conditions, it dehydrates in three separated steps between 261 and 393 K, each corresponds to the loss of one water molecule. On the other hand, the grinded CAT dehydrates in one step. From the duration of the CRTA experiment and the X-ray diffraction technique, we have showed that the grinding partially dehydrates CAT, to obtain calcium atorvastatin 1.5 H2O, while decreasing its crystallinity. Also, examination by X-ray diffraction technique of the CRTA final products of both, CAT and grinded CAT, showed that the anhydrous phase of CAT is crystallized, whereas the one of the grinded CAT is amorphous. The apparent activation energies corresponding to the dehydration steps of intact CAT (39 kJ mol−1 and 34 kJ mol−1) and grinded CAT (126 kJ mol−1 and 289 kJ mol−1) were obtained by means of two CRTA curves realized at two different reaction rates without any hypothesis on the kinetic model of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen D. Hygroscopicity of pharmaceutical crystals; 2009.

  2. Jin YS, Ulrich J. New crystalline solvates of atorvastatin calcium. Chem Eng Technol Ind Chem Plant Equip Process Eng Biotechnol. 2010;33(5):839–44. https://doi.org/10.1002/ceat.200900571.

    Article  CAS  Google Scholar 

  3. Kolb HC, Finn MG, Sharpless KB. Reviews-click chemistry: diverse chemical function from a few good reactions keywords: combinatorial chemistry, drug research, synthesis design, water chemistry. Angew Chem Int. 2001;40(11):2004–21. https://doi.org/10.1002/1521-3773(20010601)40:11%3c2004::AID-ANIE2004%3e3.0.CO;2-5.

    Article  CAS  Google Scholar 

  4. Czuczman MS, Fallon A, Mohr A, Stewart C, Bernstein ZP, McCarthy P, Klippenstein D. Rituximab in combination with CHOP or fludarabine in low-grade lymphoma. Semin Oncol. 2001;29:36–40. https://doi.org/10.1053/sonc.2002.30152.

    Article  CAS  Google Scholar 

  5. Shefter E, Higuchi T. Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals. J Pharm Sci. 1963;52(8):781–91. https://doi.org/10.1002/jps.2600520815.

    Article  PubMed  CAS  Google Scholar 

  6. Hüttenrauch R, Fricke S, Zielke P. Mechanical activation of pharmaceutical systems. Pharm Res. 1985;2(6):302–6. https://doi.org/10.1023/A:1016397719020.

    Article  PubMed  Google Scholar 

  7. Osawa T, Kamat MS, DeLuca PP. Hygroscopicity of cefazolin sodium: application to evaluate the crystallinity of freeze-dried products. Pharmaceut Res. 1988;5(7):421–5. https://doi.org/10.1023/a:1015932316622.

    Article  CAS  Google Scholar 

  8. Otsuka M, Matsumoto T, Kaneniwa N. Effects of the mechanical energy of multi-tableting compression on the polymorphic transformations of chlorpropamide. J Pharm Pharmacol. 1989;41(10):665–9. https://doi.org/10.1111/j.2042-7158.1989.tb06337.x.

    Article  PubMed  CAS  Google Scholar 

  9. Irwin WJ, Iqbal M. Solid-state stability: the effect of grinding solvated excipients. Int J Pharmaceut. 1991;75(2–3):211–8. https://doi.org/10.1016/0378-5173(91)90195-T.

    Article  CAS  Google Scholar 

  10. Brittain HG, Morris KR, Bugay DE, Thakur AB, Serajuddin AT. Solid-state NMR and IR for the analysis of pharmaceutical solids: polymorphs of fosinopril sodium. J Pharmaceut Biomed Anal. 1993;11(11–12):1063–9. https://doi.org/10.1016/0731-7085(93)80083-D.

    Article  CAS  Google Scholar 

  11. Elamin AA, Ahlneck C, Alderborn G, Nyström C. Increased metastable solubility of milled griseofulvin, depending on the formation of a disordered surface structure. Int J Pharmaceut. 1994;111(2):159–70. https://doi.org/10.1016/0378-5173(94)00132-4.

    Article  CAS  Google Scholar 

  12. Phadnis NV, Suryanarayanan R. Polymorphism in anhydrous theophylline—implications on the dissolution rate of theophylline tablets. J Pharm Sci. 1997;86(11):1256–63. https://doi.org/10.1021/js9701418.

    Article  PubMed  CAS  Google Scholar 

  13. Alsaidan SM, Alsughayer AA, Eshra AG. Improved dissolution rate of indomethacin by adsorbents. Drug Dev Ind Pharm. 1998;24(4):389–94. https://doi.org/10.1021/js9701418.

    Article  PubMed  CAS  Google Scholar 

  14. Longuemard P, Jbilou M, Guyot-Hermann AM, Guyot JC. Ground and native crystals: comparison of compression capacity and dissolution rate. Int J Pharmaceut. 1998;170(1):51–61. https://doi.org/10.1016/S0378-5173(98)00120-3.

    Article  CAS  Google Scholar 

  15. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404. https://doi.org/10.1023/A:1007516718048.

    Article  PubMed  CAS  Google Scholar 

  16. Urakami K, Shono Y, Higashi A, Umemoto K, Godo M. A novel method for estimation of transition temperature for polymorphic pairs in pharmaceuticals using heat of solution and solubility data. Chem Pharmaceut Bull. 2002;50(2):263–7. https://doi.org/10.1248/cpb.50.263.

    Article  CAS  Google Scholar 

  17. Shete G, Puri V, Kumar L, Bansal AK. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples. AAPS PharmSciTech. 2010;11(2):598–609. https://doi.org/10.1208/s12249-010-9419-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chadha R, Kuhad A, Arora P, Kishor S. Characterisation and evaluation of pharmaceutical solvates of Atorvastatin calcium by thermoanalytical and spectroscopic studies. Chem Cent J. 2012;6(1):114. https://doi.org/10.1186/1752-153X-6-114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Christensen NPA, Van Eerdenbrugh B, Kwok K, Taylor LS, Bond AD, Rades T, Rantanen J, Cornett C. Rapid insight into heating-induced phase transformations in the solid state of the calcium salt of atorvastatin using multivariate data analysis. Pharmaceut Res. 2013;30(3):826–35. https://doi.org/10.1007/s11095-012-0923-1.

    Article  CAS  Google Scholar 

  20. Galai H, Lemsi M, Louhaichi MR, Chiheb M. Solid state characterization of atorvastatin in drug products. J Chem Pharmaceut Res. 2015;7(5):76–80. https://doi.org/10.1208/s12249-010-9419-7.

    Article  CAS  Google Scholar 

  21. Christensen NPA, Van Eerdenbrugh B, Kwok K, Taylor LS, Bond AD, Rades T, Rantanen J, Cornett C. Rapid insight into heating-induced phase transformations in the solid state of the calcium salt of atorvastatin using multivariate data analysis. Pharm Res. 2013;30:826–35. https://doi.org/10.1007/s11095-012-0923-1.

    Article  PubMed  CAS  Google Scholar 

  22. Tizaoui C, Galai H, Clevers S, Couvrat N, Coquerel G, Rietveld IB. The persistence and crystallization behavior of atorvastatin calcium amorphous dispersions in polyvinylpyrrolidone. J Drug Deliv Sci Technol. 2022;72:103375. https://doi.org/10.1016/j.jddst.2022.103375.

    Article  CAS  Google Scholar 

  23. Vágvölgyi V, Daniel LM, Pinto C, Kristóf J, Frost RL, Horváth E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Cal. 2008;92:589. https://doi.org/10.1007/s10973-007-8792-2.

    Article  Google Scholar 

  24. Vágvölgyi V, Frost RL, Hales M, Locke A, Kristóf J, Horváth E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Cal. 2008;92:893. https://doi.org/10.1007/s10973-007-8845-6.

    Article  Google Scholar 

  25. Vágvölgyi V, Hales M, Martens W, Kristóf J, Horváth E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Cal. 2008;92:911. https://doi.org/10.1007/s10973-007-8846-5.

    Article  Google Scholar 

  26. Criado JM, Ortega A, Gotor F. Correlation between the shape of controlled-rate thermal analysis curves and the kinetics of solid-state reactions. Thermochim Acta. 1990;157:171. https://doi.org/10.1016/0040-6031(90)80018-T.

    Article  CAS  Google Scholar 

  27. Nahdi K, Llewellyn P, Rouquerol F, Rouquerol J, Ariguib NK, Ayedi MT. Controlled rate thermal analysis of kaolinite dehydroxylation: effect of water vapour pressure on the mechanism. Thermochim Acta. 2002;390:123. https://doi.org/10.1016/S0040-6031(02)00082-5.

    Article  CAS  Google Scholar 

  28. Béjaoui O, Zayani L, Chehimi DBH. Synthesis and thermal behaviour of Na2SO4· MgSO4· 4H2O. J Therm Anal Calorim. 2016;123(2):1205–11. https://doi.org/10.1007/s10973-015-5017-y.

    Article  CAS  Google Scholar 

  29. Bejaoui O, Zayani L, Chehimi DBH. Constant rate thermal analysis of cobaltoblödite and cupper–kröhnkite at low water vapor pressure 5 hPa. J Therm Anal Calorimet. 2019. https://doi.org/10.1007/s10973-018-7921-4.

    Article  Google Scholar 

  30. Rouquerol J. Controlled transformation rate thermal analysis: the hidden face of thermal analysis. Thermochim Acta. 1989;144(2):209–24. https://doi.org/10.1016/0040-6031(89)85101-9.

    Article  CAS  Google Scholar 

  31. Sorensen OT, Rouquerol J, editors. Sample controlled thermal analysis: origin, goals, multiple forms, applications and future. Dordrecht: Kluwer Acad. Publishers; 2003.

  32. Lea AP, McTavish D. Atorvastatin. Drugs. 1997;53(5):828–47. https://doi.org/10.2165/00003495-199753050-00011.

    Article  PubMed  CAS  Google Scholar 

  33. Antonio SG, Benini FR, Ferreira FF, Rosa PCP, de Oliveira Paiva-Santos C. Synchrotron X-ray powder diffraction data of atorvastatin. Powder Diffract. 2008;23(4):350–5. https://doi.org/10.1154/1.2996511.

    Article  CAS  Google Scholar 

  34. Hodge RL, Kaduk JA, Gindhart AM, Blanton TN. Crystal structure of atorvastatin calcium trihydrate Form I (Lipitor®),(C33H34FN2O5) 2Ca (H2O)3. Powder Diffract. 2020;35(2):136–43. https://doi.org/10.1017/S0885715620000147.

    Article  CAS  Google Scholar 

  35. Wang WD, Gao X, Strohmeier M, Wang W, Bai S, Dybowski C. Solid-state NMR studies of form I of atorvastatin calcium. J Phys Chem B. 2012;116(11):3641–9. https://doi.org/10.1021/jp212074a.

    Article  PubMed  CAS  Google Scholar 

  36. Lemsi M, Galai H, Louhaichi MR, Fessi H, Kalfat R. Amorphization of atorvastatin calcium by mechanical process: characterization and stabilization within polymeric matrix. J Pharmaceut Innov. 2017;12(3):216–25. https://doi.org/10.1007/s12247-017-9282-0.

    Article  Google Scholar 

  37. Ortega A, Akhouayri S, Rouquerol F, Rouquerol J. On the suitability of controlled transformation rate thermal analysis (CRTA) for kinetic studies: I/determination of the activation energy by the rate-jump method. Thermochim Acta. 1990;163:25–32. https://doi.org/10.1016/0040-6031(90)80376-A.

    Article  CAS  Google Scholar 

  38. Kobayashi M, Hattori Y, Sasaki T, Otsuka M. Near-infrared spectroscopy-based nondestructive at-line analysis of physicochemical properties of atorvastatin calcium hydrate after grinding. J Drug Deliv Sci Technol. 2022;71:103266–76. https://doi.org/10.1016/j.jddst.2022.103266.

    Article  CAS  Google Scholar 

Download references

Funding

Funding is provided by Ministère de l’Enseignement Supérieur et de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Meddeb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meddeb, N., Elmhamdi, A., Aksit, M. et al. Constant rate thermal analysis study of a trihydrate calcium atorvastatin and effect of grinding on its thermal stability. J Therm Anal Calorim 148, 11425–11433 (2023). https://doi.org/10.1007/s10973-023-12510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12510-9

Keywords

Navigation