Skip to main content
Log in

ANSYS-Fluent numerical modeling of the solar thermal and hybrid photovoltaic-based solar harvesting systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The rapid increase in computing power has facilitated the use of computational fluid dynamics (CFD) as an attractive tool for simulating solar systems. As a result, researchers have conducted numerous experimental and numerical studies on solar technologies, with an increasing emphasis on the utilization of CFD for simulation purposes. Hence, this article is intended to be the first of a two-part assessment of recent improvements in the use of ANSYS-Fluent CFD simulation in solar systems. In this part, the article aims to provide a comprehensive overview of CFD simulations, using ANSYS-Fluent, for different solar systems without concentrators, including solar thermal systems, hybrid photovoltaic/thermal (PV/T) systems, and photovoltaic/phase change material (PV/PCM) systems, while the concentrating solar systems are covered in the second part. Further, this review study includes informative data about the simulations, including the considered assumptions, models, and solution methods that were used with different cooling fluids, PCM materials, absorber designs, and innovative system designs. The present assessment also highlights the results and some remarks that show different important additional information such as the applied radiation and melting/solidification models. Besides, validation techniques and errors between the experimental work and simulations are introduced. In general, the ANSYS-Fluent CFD results were validated and it was possible to optimize many design parameters with minimal effort and expense. Recent research indicated that nanofluids could be a better alternative to conventional fluids to improve the thermal functionality of flat plate and hybrid PV/T systems. Effective cooling mechanisms could reduce PV panel temperature by 15–20%. Besides, integrating PCM with PV systems could enhance efficiency by 33–46% on summer days. Incorporating different nanomaterials and using fined PV/PCM configurations, the PV/PCM system demonstrated improved cost-effectiveness, while a foam layer outside the PCM could extend PV thermal management time by 55%. Many other conclusions about the commonly used physical models, solution methods, and assumptions dealing with different systems are highlighted inside. The article also identifies additional research proposals and challenges that must be addressed to advance the study of this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48.
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

Ag :

Silver

AG:

Air gap

Al2O3 :

Aluminum oxide

BCs:

Boundary conditions

CaCl2·6H2O:

Calcium chloride hexahydrate

CFD:

Computational fluid dynamics

COP:

Coefficient of performance

C&D:

Convection and diffusion

CPV/T:

Concentrated hybrid photovoltaic/thermal

CuO:

Copper oxide

DAG:

Double air gap

DO:

Discrete ordinate

EN:

Energy

EVA:

Ethylene-vinyl acetate

Fe3Cl2·6H2O:

Ferric chloride hexahydrate

FPCs:

Flat plate solar collectors

GaAs:

Gallium arsenide

GaInp:

Gallium indium phosphide

HS:

Heat surface

HT:

Heat transfer

HTF:

Heat transfer fluid

HYB:

Hyderabad city

InGaAs:

Indium gallium arsenide

InGaP:

Indium gallium phosphide

I s :

Solar radiation

JCB:

Jacobabad city

LCPVT:

Low-concentration photovoltaic thermal

LPM:

Liters per minute

MAPE:

Mean absolute percentage error

MEPCM:

Microencapsulated phase change material

MOM:

Momentum

MPK:

Mirpurkhas city

NPCM:

Nano-enhanced PCMs

NWB:

Nawabshah city

PCM:

Phase change materials

PMMA:

Polymethyl methacrylate

PV/PCM:

Hybrid photovoltaic/phase change material

P–V:

Pressure–velocity

PV/T:

Hybrid photovoltaic/thermal

Q-SS:

Quasi steady-state

RAD:

Radiation

RMSD:

Root mean square deviation

RMSE:

Root mean square error

S2S:

Surface to surface

SAG:

Single air gap

SC:

Solar chimney

SCV:

Solar chimney ventilator

SiO2 :

Silicon dioxide

SRT:

Solar ray tracing

SS:

Steady-state

SWHs:

Solar water heaters

T :

Temperature

T a :

Ambient temperature

TC:

Thermal conductivity

TEG:

Thermoelectric generator

TKE:

Turbulent Kinetic Energy

TR:

Transient

TURB:

Turbulent

VG:

Vacuum glazing

VISC:

Viscosity

ZnO:

Zinc oxide

References

  1. Renewable I, Agency E. Renewable Energy Statistics 2021. Stat. Focus. 2021.

  2. https://www.alternative-energy-tutorials.com/solar-hot-water/flat-plate-collector.html. Accessed on Sept 17, 2022.

  3. Mohan S, Dinesha P, Iyengar AS. Modeling and analysis of a solar minichannel flat plate collector system and optimization of operating conditions using particle swarms. Therm Sci Eng Prog. 2021;22:100855.

    Google Scholar 

  4. Prasannakumaran KM, Sanjay Kumar C, Karthikeyan M, Premkumar D, Kirubakaran V. Nanopowdered biochar materials as a selective coating in solar flat plate collectors. In: Nanomaterials. Academic Press; 2021;663–76.

  5. Michael JJ, Selvarasan I. Economic analysis and environmental impact of flat plate roof mounted solar energy systems. Sol Energy. 2017;142:159–70.

    Google Scholar 

  6. Sint NKC, Choudhury IA, Masjuki HH, Aoyama H. Theoretical analysis to determine the efficiency of a CuO–water nanofluid based-flat plate solar collector for domestic solar water heating system in Myanmar. Sol Energy. 2017;155:608–19.

    CAS  Google Scholar 

  7. Deng J, Xu Y, Yang X. A dynamic thermal performance model for flat-plate solar collectors based on the thermal inertia correction of the steady-state test method. Renew Energy. 2015;76:679–86.

    Google Scholar 

  8. Ismail TM, Ramzy K, Sherif H. Drying of refuse-derived fuel (RDF) using solar tunnel dryer integrated with flat-plate solar collector: an experimental approach. Detritus. 2020;13:140.

    Google Scholar 

  9. Babar OA, Arora VK, Nema PK, Kasara A, Tarafdar A. Effect of PCM assisted flat plate collector solar drying of green chili on retention of bioactive compounds and control of aflatoxins development. Sol Energy. 2021;229:102–11.

    CAS  Google Scholar 

  10. Ghorbani B, Ebrahimi A, Moradi M. Exergy, pinch, and reliability analyses of an innovative hybrid system consisting of solar flat plate collectors, Rankine/CO2/Kalina power cycles, and multi-effect desalination system. Process Saf Environ Prot. 2021;156:160–83.

    CAS  Google Scholar 

  11. Ma Q, Ahmadi A, Cabassud C. Direct integration of a vacuum membrane distillation module within a solar collector for small-scale units adapted to seawater desalination in remote places: design, modeling & evaluation of a flat-plate equipment. J Memb Sci. 2018;564:617–33.

    CAS  Google Scholar 

  12. Vall S, Johannes K, David D, Castell A. A new flat-plate radiative cooling and solar collector numerical model: evaluation and metamodeling. Energy. 2020;202:117750.

    Google Scholar 

  13. Figaj R, Szubel M, Przenzak E, Filipowicz M. Feasibility of a small-scale hybrid dish/flat-plate solar collector system as a heat source for an absorption cooling unit. Appl Therm Eng. 2019;163:114399.

    Google Scholar 

  14. Ashour AF, El-Awady AT, Tawfik MA. Numerical investigation on the thermal performance of a flat plate solar collector using ZnO & CuO water nanofluids under Egyptian weathering conditions. Energy. 2022;240:122743.

    CAS  Google Scholar 

  15. Khetib Y, Alzaed A, Tahmasebi A, Sharifpur M, Cheraghian G. Influence of using innovative turbulators on the exergy and energy efficacy of flat plate solar collector with DWCNTs-TiO2/water nanofluid. Sustain Energy Technol Assess. 2022;51:101855.

    Google Scholar 

  16. Unar IN, Maitlo G, Abbasi SA, Abro M, Qureshi RF, Memon SA, et al. Modeling and simulation of solar flat plate collector for energy recovery at varying regional coordinates. Environ Sci Pollut Res Int. 2022;29:4748–61.

    PubMed  Google Scholar 

  17. Danial Bin Mohd Hairii A, Salim NA, Mohamad H, Yasin ZM. Modelling and simulation of solar water heating system (SWH) with thermal storage using flat plate solar collector. In: ICPEA 2021—2021 IEEE international conference in power engineering application. Institute of Electrical and Electronics Engineers Inc.; 2021, pp 45–50.

  18. Lämmle M, Oliva A, Hermann M, Kramer K, Kramer W. PVT collector technologies in solar thermal systems: a systematic assessment of electrical and thermal yields with the novel characteristic temperature approach. Sol Energy. 2017;155:867–79.

    Google Scholar 

  19. Imtiaz Hussain M, Kim JH, Kim JT. Nanofluid-powered dual-fluid photovoltaic/thermal (PV/T) system: comparative numerical study. Energies. 2019;12:775.

    Google Scholar 

  20. Abdelrazik AS, Al-Sulaiman FA, Saidur R, Ben-Mansour R. A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems. Renew Sustain Energy Rev. 2018;95:110.

    CAS  Google Scholar 

  21. Maadi SR, Navegi A, Solomin E, Ahn HS, Wongwises S, Mahian O. Performance improvement of a photovoltaic–thermal system using a wavy-strip insert with and without nanofluid. Energy. 2021;234:121190.

    CAS  Google Scholar 

  22. Maghrabie H, Mohamed A, Fahmy A, Abdelsamee A. Performance augmentation of PV panels using phase change material cooling technique: a review. SVU Int J Eng Sci Appl. 2021;2:1–13.

    Google Scholar 

  23. Sharma NK, Gaur MK, Malvi CS. Application of phase change materials for cooling of solar photovoltaic panels: a review. Mater Today Proc. 2020;47:6759–65.

    Google Scholar 

  24. Socaciu L, Pleşa A, Ungureşan P, Giurgiu O. Review on phase change materials for building applications. Leonardo Electron J Pract Technol. 2014;13:179–94.

    Google Scholar 

  25. Ali HM. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems—a comprehensive review. Sol Energy. 2020;197:163–98. https://doi.org/10.1016/j.solener.2019.11.075.

    Article  Google Scholar 

  26. Kazemian A, Khatibi M, Reza Maadi S, Ma T. Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material. Appl Energy. 2021;295:116859.

    CAS  Google Scholar 

  27. Waqas A, Ji J, Xu L, Ali M, Zeashan, Alvi J. Thermal and electrical management of photovoltaic panels using phase change materials—a review. Renew Sustain Energy Rev. 2018;92:254–71. https://doi.org/10.1016/j.rser.2018.04.091.

    Article  Google Scholar 

  28. Rangababu JA, Kiran Kumar K, Srinivasa RS. Numerical analysis and validation of heat transfer mechanism of flat plate collectors. Procedia Eng. 2015;127:63–70.

    Google Scholar 

  29. Wang N, Zeng S, Zhou M, Wang S. Numerical study of flat plate solar collector with novel heat collecting components. Int Commun Heat Mass Transf. 2015;69:18–22.

    CAS  Google Scholar 

  30. Hung TC, Huang TJ, Lee DS, Lin CH, Pei BS, Li ZY. Numerical analysis and experimental validation of heat transfer characteristic for flat-plate solar air collector. Appl Therm Eng. 2017;111:1025–38.

    Google Scholar 

  31. García-Guendulain JM, Riesco-Avila JM, Elizalde-Blancas F, Belman-Flores JM, Serrano-Arellano J. Numerical study on the effect of distribution plates in the manifolds on the flow distribution and thermal performance of a flat plate solar collector. Energies. 2018;11:1077.

    Google Scholar 

  32. Zhou L, Wang Y, Huang Q. CFD investigation of a new flat plate collector with additional front side transparent insulation for use in cold regions. Renew Energy. 2019;138:754–63.

    CAS  Google Scholar 

  33. Unar IN, Maitlo G, Ahmed S, Ali SS, Memon AQ, Kandhro GA, et al. Performance evaluation of solar flat plate collector using different working fluids through computational fluid dynamics. SN Appl Sci. 2020;2:1–10. https://doi.org/10.1007/s42452-020-2005-z.

    Article  CAS  Google Scholar 

  34. Badiei Z, Eslami M, Jafarpur K. Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: a CFD modeling. Energy. 2020;192:116719.

    Google Scholar 

  35. Amraoui MA. Three-dimensional numerical simulation of a flat plate solar collector with double paths. Int J Heat Technol. 2021;39:1087–96.

    Google Scholar 

  36. Kansara R, Pathak M, Patel VK. Performance assessment of flat-plate solar collector with internal fins and porous media through an integrated approach of CFD and experimentation. Int J Therm Sci. 2021;165:106932.

    Google Scholar 

  37. Bharti A, Sharma B, Paswan MK. CFD and thermal analysis of the flat plate collector—solar water heater under steady-state conditions. In: Das LM, Kumar N, Lather RS, Bhatia P, editors. Emerging trends in mechanical engineering. Lecture Notes in Mechanical Engineering. Singapore: Springer; 2021. p. 209–17.

    Google Scholar 

  38. García-Guendulain JM, Riesco-Avila JM, Elizalde-Blancas F, Belman-Flores JM, Serrano-Arellano J. Numerical study on the effect of distribution plates in the manifolds on the flow distribution and thermal performance of a flat plate solar collector. Energies. 2018;11:1077.

    Google Scholar 

  39. Jing D, Hu Y, Liu M, Wei J, Guo L. Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system. Sol Energy. 2015;112:30–40. https://doi.org/10.1016/j.solener.2014.11.008.

    Article  CAS  Google Scholar 

  40. Chaabane M, Charfi W, Mhiri H, Bournot P. Performance evaluation of concentrating solar photovoltaic and photovoltaic/thermal systems. Sol Energy. 2013;98:315–21.

    Google Scholar 

  41. Khelifa A, Touafek K, Ben Moussa H, Tabet I. Modeling and detailed study of hybrid photovoltaic thermal (PV/T) solar collector. Sol Energy. 2016;135:169–76. https://doi.org/10.1016/j.solener.2016.05.048.

    Article  Google Scholar 

  42. Pauly L, Rekha L, Vazhappilly CV, Melvinraj CR. Numerical simulation for solar hybrid photovoltaic thermal air collector. Procedia Technol. 2016;24:513–22. https://doi.org/10.1016/j.protcy.2016.05.088.

    Article  Google Scholar 

  43. Khanjari Y, Pourfayaz F, Kasaeian AB. Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Convers Manag. 2016;122:263–78. https://doi.org/10.1016/j.enconman.2016.05.083.

    Article  CAS  Google Scholar 

  44. Lu L, Wang X, Wang S, Liu X. Analysis of three different sheet-and-tube water-based flat-plate PVT collectors. J Energy Eng. 2017;143:04017022.

    Google Scholar 

  45. Li Y, Jing D. Investigation of the performance of photovoltaic/thermal system by a coupled TRNSYS and CFD simulation. Sol Energy. 2017;143:100–12. https://doi.org/10.1016/j.solener.2016.12.051.

    Article  CAS  Google Scholar 

  46. Zhou J, Ke H, Deng X. Experimental and CFD investigation on temperature distribution of a serpentine tube type photovoltaic/thermal collector. Sol Energy. 2018;174:735–42. https://doi.org/10.1016/j.solener.2018.09.063.

    Article  Google Scholar 

  47. Ömeroǧlu G. CFD analysis and electrical efficiency improvement of a hybrid PV/T panel cooled by forced air circulation. Int J Photoenergy. 2018;2018:9139683.

    Google Scholar 

  48. Rosli MAM, Ping YJ, Misha S, Akop MZ, Sopian K, Mat S, et al. Simulation study of computational fluid dynamics on photovoltaic thermal water collector with different designs of absorber tube. J Adv Res Fluid Mech Therm Sci. 2018;52:12–22.

    Google Scholar 

  49. Amanlou Y, Tavakoli Hashjin T, Ghobadian B, Najafi G. Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate. Appl Therm Eng. 2018;141:413–21.

    Google Scholar 

  50. Hosseinzadeh M, Salari A, Sardarabadi M, Passandideh-Fard M. Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation. Energy Convers Manag. 2018;160:93–108. https://doi.org/10.1016/j.enconman.2018.01.006.

    Article  CAS  Google Scholar 

  51. Maadi SR, Khatibi M, Ebrahimnia-Bajestan E, Wood D. Coupled thermal-optical numerical modeling of PV/T module—combining CFD approach and two-band radiation DO model. Energy Convers Manag. 2019;198:111781.

    Google Scholar 

  52. Misha S, Abdullah AL, Tamaldin N, Rosli MAM, Sachit FA. Simulation CFD and experimental investigation of PVT water system under natural Malaysian weather conditions. Energy Rep. 2020;6:28–44. https://doi.org/10.1016/j.egyr.2019.11.162.

    Article  Google Scholar 

  53. El-Samie MMA, Ju X, Zhang Z, Adam SA, Pan X, Xu C. Three-dimensional numerical investigation of a hybrid low concentrated photovoltaic/thermal system. Energy. 2020;190:116436.

    Google Scholar 

  54. Nasseriyan P, Gorouh HA, Gomes J, Cabral D, Salmanzadeh M, Lehmann T, et al. Numerical and experimental study of an asymmetric CPC–PVT solar collector. Energies. 2020;13:1669.

    CAS  Google Scholar 

  55. Afzanizam M, Rosli MAM, Alias I, Latif F, Nawam MZ, Noor M, et al. A simulation study on temperature uniformity of photovoltaic thermal using computational fluid dynamics. J Adv Res Fluid Mech Therm Sci. 2021;1:21–38.

    Google Scholar 

  56. Alsalame HAM, Lee JH, Lee GH. Performance evaluation of a photovoltaic thermal (PVT) system using nanofluids. Energies. 2021;14:1–12.

    Google Scholar 

  57. Ma T, Zhao J, Li Z. Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material. Appl Energy. 2018;228:1147–58. https://doi.org/10.1016/j.apenergy.2018.06.145.

    Article  Google Scholar 

  58. Darkwa J, Calautit J, Du D, Kokogianakis G. A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells. Appl Energy. 2019;248:688–701.

    Google Scholar 

  59. Karthick A, Ramanan P, Ghosh A, Stalin B, Vignesh Kumar R, Baranilingesan I. Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material. Asia-Pac J Chem Eng. 2020;15:1–11.

    Google Scholar 

  60. Salari A, Ashouri M, Hakkaki-Fard A. On the performance of inclined rooftop solar chimney integrated with photovoltaic module and phase change material: a numerical study. Sol Energy. 2020;211:1159–69.

    Google Scholar 

  61. Xamán J, Vargas-López R, Gijón-Rivera M, Zavala-Guillén I, Jiménez MJ, Arce J. Transient thermal analysis of a solar chimney for buildings with three different types of absorbing materials: copper plate/PCM/concrete wall. Renew Energy. 2019;136:139–58.

    Google Scholar 

  62. Arıcı M, Bilgin F, Nižetić S, Papadopoulos AM. Phase change material based cooling of photovoltaic panel: a simplified numerical model for the optimization of the phase change material layer and general economic evaluation. J Clean Prod. 2018;189:738–45.

    Google Scholar 

  63. Ahmed M, Radwan A, Serageldin A, Memon S, Katsura T, Nagano K. Thermal analysis of a new sliding smart window integrated with vacuum insulation, photovoltaic, and phase change material. Sustainability. 2020;12:7846.

    CAS  Google Scholar 

  64. Kamkari B, Shokouhmand H, Bruno F. Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure. Int J Heat Mass Transf. 2014;72:186–200.

    CAS  Google Scholar 

  65. Ampofo F, Karayiannis TG. Experimental benchmark data for turbulent natural convection in an air filled square cavity. Int J Heat Mass Transf. 2003;46:3551–72.

    Google Scholar 

  66. Cao Y, Pourhedayat S, Dizaji HS, Wae-hayee M. A comprehensive optimization of phase change material in hybrid application with solar chimney and photovoltaic panel for simultaneous power production and air ventilation. Build Environ. 2021;197:107833.

    Google Scholar 

  67. Li W, Guan Y, Zhang X, Zhao J. Experimental and numerical study on performance enhancement of photovoltaic panel by controlling temperature with phase change material. Int J Energy Res. 2021;45:16062–77.

    Google Scholar 

  68. Cao Y, Sinaga N, Pourhedayat S, Dizaji HS. Innovative integration of solar chimney ventilator, solar panel and phase change material; under real transient weather condition of Hong Kong through different months. Renew Energy. 2021;174:865–78.

    CAS  Google Scholar 

  69. Abdulmunem AR, Mohd Samin P, Abdul Rahman H, Hussien HA, Izmi Mazali I, Ghazali H. Numerical and experimental analysis of the tilt angle’s effects on the characteristics of the melting process of PCM-based as PV cell’s backside heat sink. Renew Energy. 2021;173:520–30.

    Google Scholar 

  70. Akshayveer KA, Pratap Singh A, Sreeram Kotha R, Singh OP. Thermal energy storage design of a new bifacial PV/PCM system for enhanced thermo-electric performance. Energy Convers Manag. 2021;250:114912.

    CAS  Google Scholar 

  71. Mahdi JM, Mohammed HI, Talebizadehsardari P. A new approach for employing multiple PCMs in the passive thermal management of photovoltaic modules. Sol Energy. 2021;222:160–74.

    Google Scholar 

  72. Mahdi JM, Pal Singh R, Taqi Al-Najjar HM, Singh S, Nsofor EC. Efficient thermal management of the photovoltaic/phase change material system with innovative exterior metal-foam layer. Sol Energy. 2021;216:411–27.

    CAS  Google Scholar 

  73. Huang MJ, Eames PC, Norton B. Thermal regulation of building-integrated photovoltaics using phase change materials. Int J Heat Mass Transf. 2004;47:2715–33.

    CAS  Google Scholar 

  74. Huang MJ. The effect of using two PCMs on the thermal regulation performance of BIPV systems. Sol Energy Mater Sol Cells. 2011;95:957–63. https://doi.org/10.1016/j.solmat.2010.11.032.

    Article  CAS  Google Scholar 

  75. Zhao CY, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy. 2010;84:1402–12.

    CAS  Google Scholar 

  76. Ahmad A, Navarro H, Ghosh S, Ding Y, Roy JN. Evaluation of new PCM/PV configurations for electrical energy efficiency improvement through thermal management of PV systems. Energies. 2021;14:4130.

    CAS  Google Scholar 

  77. Ashouri M, Hakkaki-Fard A. Improving the performance of the finned absorber inclined rooftop solar chimney combined with composite PCM and PV module. Sol Energy. 2021;228:562–74.

    Google Scholar 

  78. Liu S, Li Y. An experimental study on the thermal performance of a solar chimney without and with PCM. Renew Energy. 2015;81:338–46.

    Google Scholar 

  79. Browne MC, Norton B, Mccormack SJ. Heat retention of a photovoltaic/thermal collector with PCM. Sol Energy. 2016;133:533–48. https://doi.org/10.1016/j.solener.2016.04.024.

    Article  Google Scholar 

  80. Metwally H, Mahmoud NA, Ezzat M, Aboelsoud W. Numerical investigation of photovoltaic hybrid cooling system performance using the thermoelectric generator and RT25 Phase change material. J Energy Storage. 2021;42:103031.

    Google Scholar 

  81. Aneli S, Arena R, Gagliano A. Numerical simulations of a PV module with phase change material (PV–PCM) under variable weather conditions. Int J Heat Technol. 2021;39:643–52.

    Google Scholar 

  82. Riffat J, Kutlu C, Brito ET, Su Y, Riffat S. Performance analysis of a PV powered variable speed dc fridge integrated with PCM for weak/off-grid setting areas. Futur Cities Environ. 2021;7:1–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Abdelrazik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrazik, A.S., Osama, A., Allam, A.N. et al. ANSYS-Fluent numerical modeling of the solar thermal and hybrid photovoltaic-based solar harvesting systems. J Therm Anal Calorim 148, 11373–11424 (2023). https://doi.org/10.1007/s10973-023-12509-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12509-2

Keywords

Navigation