Skip to main content
Log in

Viscosity of graphene in lubricating oil, ethylene glycol and glycerol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper reports the results of an experimental investigation of graphene particle suspensions in lubricating oil, ethylene glycol and glycerol-based fluids. Graphene particles of different specific surface area show variation in the viscosity depending on the shear rate and the temperature. The lubricating effect, e.g., reduction in the viscosity compared to the base fluid, is observed for the concentration (below 0.4 mass%) in lubricating oil and glycerol. In the range of parameters studied (e.g., concentration below 1 mass% and temperature up to 80 °C), the activation energy slightly decreases. The enhancement of viscosity with graphene volume fraction is larger for ethylene glycol.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahammed N, Asirvatham LG, Wongwises S. Effect of volume concentration and temperature on viscosity and surface tension of graphene-water nanofluid for heat transfer applications. J Therm Anal Calorim. 2016;123(2):1399–409. https://doi.org/10.1007/s10973-015-5034-x.

    Article  CAS  Google Scholar 

  2. Arshad A, Jabbal M, Yan Y, et al. A review on graphene based nanofluids: preparation, characterization and applications. J Mol Liq. 2019;279:444–84. https://doi.org/10.1016/j.molliq.2019.01.153.

    Article  CAS  Google Scholar 

  3. Bakak A, Lotfi M, Heyd R, et al. Viscosity and rheological properties of graphene nanopowders nanofluids. Entropy. 2021;23(8):979. https://doi.org/10.3390/e23080979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bortolato M, Dugaria S, Agresti F, et al. Investigation of a single wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector. Energy Convers Manag. 2017;150:693–703. https://doi.org/10.1016/j.enconman.2017.08.044.

    Article  CAS  Google Scholar 

  5. Cabaleiro D, Colla L, Barison S, et al. Heat transfer capability of (ethylene glycol+water)-based nanofluids containing graphene nanoplatelets: design and thermophysical profile. Nanoscale Res Lett. 2017;12(1):1–11. https://doi.org/10.1186/s11671-016-1806-x.

    Article  CAS  Google Scholar 

  6. Cong P, Xu P, Chen S. Effects of carbon black on the anti-aging, rheological and conductive properties of sbs/asphalt/carbon black composites. Constr Build Mater. 2014;52:306–13. https://doi.org/10.1016/j.conbuildmat.2013.11.061.

    Article  Google Scholar 

  7. Fakhari A, Fernandes C, Galindo-Rosales FJ. Mapping the volume transfer of graphene-based inks with the gravure printing process: influence of rheology and printing parameters. Materials. 2022;15(7):2580. https://doi.org/10.3390/ma15072580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Guazzelli E, Morris JF. A physical introduction to suspension dynamics. Cambridge: Cambridge University Press; 2011. https://doi.org/10.1017/CBO9780511894671.001.

    Book  Google Scholar 

  9. Halelfadl S, Estellé P, Aladag B, et al. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. Int J Therm Sci. 2013;71:111–7. https://doi.org/10.1016/j.ijthermalsci.2013.04.013.

    Article  CAS  Google Scholar 

  10. Hamze S, Cabaleiro D, Estellé P. Graphene-based nanofluids: a comprehensive review about rheological behavior and dynamic viscosity. J Mol Liq. 2021;325(115):207. https://doi.org/10.1016/j.molliq.2020.115207.

    Article  CAS  Google Scholar 

  11. Iranmanesh S, Mehrali M, Sadeghinezhad E, et al. Evaluation of viscosity and thermal conductivity of graphene nanoplatelets nanofluids through a combined experimental-statistical approach using respond surface methodology method. Int Commun Heat Mass Transf. 2016;79:74–80. https://doi.org/10.1016/j.icheatmasstransfer.2016.10.004.

    Article  CAS  Google Scholar 

  12. Kole M, Dey TK. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J Appl Phys. 2013;113(8): 084307. https://doi.org/10.1063/1.4793581.

    Article  CAS  Google Scholar 

  13. Larsen T, Søbye AL, Royer JR, et al. Rheology of polydisperse nonspherical graphite particles suspended in mineral oil. J Rheol. 2022;67(1):81–9. https://doi.org/10.1122/8.0000511.

    Article  CAS  Google Scholar 

  14. Lee GJ, Rhee CK. Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation. J Mater Sci. 2014;49(4):1506–11. https://doi.org/10.1007/s10853-013-7831-6.

    Article  CAS  Google Scholar 

  15. Lotfi M, Heyd R, Bakak A, et al. Experimental measurements on the thermal conductivity of glycerol-based nanofluids with different thermal contrasts. J Nanomater. 2021. https://doi.org/10.1155/2021/3190877.

    Article  Google Scholar 

  16. Mehrali M, Sadeghinezhad E, Latibari ST, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett. 2014;9(1):1–12. https://doi.org/10.1186/1556-276X-9-15.

    Article  CAS  Google Scholar 

  17. Moghaddam MB, Goharshadi EK, Entezari MH, et al. Preparation, characterization, and rheological properties of graphene-glycerol nanofluids. Chem Eng J. 2013;231:365–72. https://doi.org/10.1016/j.cej.2013.07.006.

    Article  CAS  Google Scholar 

  18. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9. https://doi.org/10.1126/science.1102896.

    Article  PubMed  CAS  Google Scholar 

  19. Pavía M, Alajami K, Estellé P, et al. A critical review on thermal conductivity enhancement of graphene-based nanofluids. Adv Coll Interface Sci. 2021;294(102):452. https://doi.org/10.1016/j.cis.2021.102452.

    Article  CAS  Google Scholar 

  20. Peixinho J, Karanjkar PU, Lee JW, et al. Rheology of hydrate forming emulsions. Langmuir. 2010;26(14):11699–704. https://doi.org/10.1021/la101141j.

    Article  PubMed  CAS  Google Scholar 

  21. Ruthven DM. Principles of adsorption and adsorption processes. Hoboken: Wiley; 1984.

    Google Scholar 

  22. Sadeghinezhad E, Mehrali M, Saidur R, et al. A comprehensive review on graphene nanofluids: recent research, development and applications. Energy Convers Manag. 2016;111:466–87. https://doi.org/10.1016/j.enconman.2016.01.004.

    Article  CAS  Google Scholar 

  23. Sandeep N. Effect of aligned magnetic field on liquid thin film flow of magnetic-nanofluids embedded with graphene nanoparticles. Adv Powder Technol. 2017;28(3):865–75. https://doi.org/10.1016/j.apt.2016.12.012.

    Article  CAS  Google Scholar 

  24. Segur JB, Oberstar HE. Viscosity of glycerol and its aqueous solutions. Ind Eng Chem. 1951;43(9):2117–20. https://doi.org/10.1021/ie50501a040.

    Article  CAS  Google Scholar 

  25. Soares YCF, Cargnin E, Naccache MF, et al. Influence of oxidation degree of graphene oxide on the shear rheology of poly (ethylene glycol) suspensions. Fluids. 2020;5(2):41. https://doi.org/10.3390/fluids5020041.

    Article  CAS  Google Scholar 

  26. Takamura K, Fischer H, Morrow NR. Physical properties of aqueous glycerol solutions. J Petrol Sci Eng. 2012;98:50–60. https://doi.org/10.1016/j.petrol.2012.09.003.

    Article  CAS  Google Scholar 

  27. Vakili M, Khosrojerdi S, Aghajannezhad P, et al. A hybrid artificial neural network-genetic algorithm modeling approach for viscosity estimation of graphene nanoplatelets nanofluid using experimental data. Int Commun Heat Mass Transf. 2017;82:40–8. https://doi.org/10.1016/j.icheatmasstransfer.2017.02.003.

    Article  CAS  Google Scholar 

  28. Vallejo JP, Żyła G, Fernández-Seara J, et al. Influence of six carbon-based nanomaterials on the rheological properties of nanofluids. Nanomaterials. 2019;9(2):146. https://doi.org/10.3390/nano9020146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wang Y, Al-Saaidi HAI, Kong M, et al. Thermophysical performance of graphene based aqueous nanofluids. Int J Heat Mass Transf. 2018;119:408–17. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.019.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Philippe Barboux for the BET measurements.

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JB, RH, GR, AA and JP contributed to the conception and design of the study. JB and JP acquired the data. JB, RH and JP analyzed or interpreted the data. JB and JP drafted the manuscript. RH, GR, AA and JP revised the manuscript. All authors have read and agreed to the published version of the manuscript

Corresponding author

Correspondence to Jorge Peixinho.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Heyd, R., Régnier, G. et al. Viscosity of graphene in lubricating oil, ethylene glycol and glycerol. J Therm Anal Calorim 148, 11455–11465 (2023). https://doi.org/10.1007/s10973-023-12498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12498-2

Keywords

Navigation