Skip to main content
Log in

Characterization of Al2O3, TiO2, hybrid Al2O3-TiO2 and graphene oxide nanofluids and their performance evaluations in photovoltaic thermal system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Advanced nanofluid with high stability is essential to meet the demands of the current industry and solar thermal systems. In industrial application, graphene oxide (GO) nanofluid formulated with ethylene glycol (EG)/water (W) is usually well-known for good stability along with high thermal conductivity. In this research, GO nanofluid is characterized for exploring its thermal, optical and suspension stability under certain conditions and then utilized as working fluid in photovoltaic thermal (PV/T) system for measuring its performance compared to those of water and Al2O3, TiO2 and hybrid Al2O3-TiO2-based nanofluids. The thermal conductivity, thermal stability, morphology and optical absorbance are characterized by using thermal analyzer, TGA, SEM and UV–vis analysis, respectively. The results revealed that the thermal conductivity of GO/EG:W nanofluid was increased by 9.5% at 40 °C compared to water. It also showed good stability with a zeta potential of 30.3 mV. The numerical implantation of GO/EG:W nanofluid performed by COMSOL Multiphysics software presented significant improvement compared to Al2O3/EG:W, TiO2/EG:W and TiO2-Al2O3/EG:W nanofluids with a concentration of 0.01 mass% to 0.1 mass%. The measured electrical and thermal efficiencies of the PV/T system were 13.5% and 76%, respectively, using GO/EG:W with 0.07 kg s−1 mass flow rate and 0.01 mass% concentration. The stated findings identified GO/EG:W nanofluid as more effective in enhancing PV/T system’s performance than other tested working fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EG:

Ethylene glycol

PV:

Photovoltaic

EDX:

Energy-dispersive x-ray

PV/T:

Photovoltaic thermal

FEA:

Finite element analysis

SWCNT:

Single-walled carbon nanotube

FESEM:

Field emission scanning electron microscopy

TEM:

Transmission electron spectroscopy

FF:

Fill factor

TGA:

Thermogravimetric analysis

GO:

Graphene oxide

UV–vis:

Ultraviolet–visible spectroscopy

GO/EG:W:

Graphene oxide/Ethylene Glycol: Water

UDF:

User-defined functions

I sc :

Short-circuit current

V oc :

Open-circuit voltage

MWCNT:

Multi-walled carbon nanotube

References

  1. Tembhare S, Barai D, Bhanvase B. Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: a comprehensive review. Renew Sust Energ Rev. 2022;153:111738. https://doi.org/10.1016/j.rser.2021.111738.

    Article  CAS  Google Scholar 

  2. Zaboli M, Ajarostaghi SSM, Saedodin S, Pour MS. Thermal performance enhancement using absorber tube with inner helical axial fins in a parabolic trough solar collector. Appl Sci. 2021;11:7423. https://doi.org/10.3390/app11167423.

    Article  CAS  Google Scholar 

  3. Bhakre S, Sawarkar P, Kalamkar V. Performance evaluation of PV panel surfaces exposed to hydraulic cooling–a review. Sol Energy. 2021;224:1193–209. https://doi.org/10.1016/j.solener.2021.06.083.

    Article  Google Scholar 

  4. Alshuraiaan B. Evaluation of the thermal performance of various nanofluids used to harvest solar energy. Energy Ecol Environ. 2021;6:531–9.

    Article  CAS  Google Scholar 

  5. Saedodin S, Zaboli M, Ajarostaghi SSM. Hydrothermal analysis of heat transfer and thermal performance characteristics in a parabolic trough solar collector with turbulence-inducing elements. Sustain Energy Technol Assess. 2021;46:101266. https://doi.org/10.1016/j.seta.2021.101266.

    Article  Google Scholar 

  6. Hossain F, Karim M, Bhuiyan A. A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems. Renew Energy. 2022;188:114–31. https://doi.org/10.1016/j.renene.2022.01.116.

    Article  CAS  Google Scholar 

  7. Zaytseva O, Neumann G. Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric. 2016;3:17. https://doi.org/10.1186/s40538-016-0070-8.

    Article  CAS  Google Scholar 

  8. Wahab A, Khan M, Hassan A. Impact of graphene nanofluid and phase change material on hybrid photovoltaic thermal system: exergy analysis. J Clean Prod. 2020;277:123370. https://doi.org/10.1016/j.jclepro.2020.123370.

    Article  CAS  Google Scholar 

  9. Qeays I, Yahya S, Asjad M, Khan Z. Multi-performance optimization of nanofluid cooled hybrid photovoltaic thermal system using fuzzy integrated methodology. J Clean Prod. 2020;256:120451. https://doi.org/10.1016/j.jclepro.2020.120451.

    Article  CAS  Google Scholar 

  10. Parsa S, Yazdani A, Aberoumand H, Farhadi Y, Ansari A, Aberoumand S, Karimi N, Afrand M, Cheraghian G, Ali H. A critical analysis on the energy and exergy performance of photovoltaic/thermal (PV/T) system: the role of nanofluids stability and synthesizing method. Sustain Energy Technol Assess. 2022;51:101887. https://doi.org/10.1016/j.seta.2021.101887.

    Article  Google Scholar 

  11. Kim S, Choi S, Kim D. Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. J Heat Transf. 2007;129:298–307.

    Article  CAS  Google Scholar 

  12. Delouei A, Sajjadi H, Izadi M, Mohebbi R. The simultaneous effects of nanoparticles and ultrasonic vibration on inlet turbulent flow: an experimental study. Appl Therm Eng. 2019;146:268–77.

    Article  Google Scholar 

  13. Abdallah S, Elsemary I, Altohamy A, Abdelrahman M, Attia A, Abdellatif O. Experimental investigation on the effect of using nano fluid (Al2O3-Water) on the performance of PV/T system. Therm Sci Eng Prog. 2018;7:1–7.

    Article  CAS  Google Scholar 

  14. Yang L, Hu Y. Toward TiO2 nanofluids—part 1: preparation and properties. Nanoscale Res Lett. 2017;12:417. https://doi.org/10.1186/s11671-017-2184-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kiliç F, Menlik T, Sözen A. Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Sol Energy. 2018;164:101–8.

    Article  Google Scholar 

  16. Subramani J, Nagarajan P, Mahian O, Sathyamurthy R. Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime. Renew Energy. 2018;119:19–31.

    Article  CAS  Google Scholar 

  17. Kahani M, Zamen M, Rostami B. Modeling and empirical study of TiO2/water nanofluid flows in a modified configuration with new layer arrangement of a photovoltaic/thermal system. Sustain Energy Technol Assess. 2022;51:101932. https://doi.org/10.1016/j.seta.2021.101932.

    Article  Google Scholar 

  18. Zaboli M, Ajarostaghi SSM, Saedodin S, Behnam K. Hybrid nanofluid flow and heat transfer in a parabolic trough solar collector with inner helical axial fins as turbulator. Eur Phys J Plus. 2021;136:841. https://doi.org/10.1140/epjp/s13360-021-01807-z.

    Article  CAS  Google Scholar 

  19. Samylingam L, Aslfattahi N, Saidur R, Yahya S, Afzal A, Arifutzzaman A, Tan K, Kadirgama K. Thermal and energy performance improvement of hybrid PV/T system by using olein palm oil with MXene as a new class of heat transfer fluid. Solar Energy Mater Solar Cells. 2020;218:110754. https://doi.org/10.1016/j.solmat.2020.110754.

    Article  CAS  Google Scholar 

  20. Yan S, Kalbasi R, Nguyen Q, Karimipour A. Rheological behavior of hybrid MWCNTs-TiO2/EG nanofluid: a comprehensive modeling and experimental study. J Mol Liq. 2020;308:113058.

    Article  CAS  Google Scholar 

  21. Sangeetha M, Manigandan S, Ashok B, Brindhadevi K, Pugazhendhi A. Experimental investigation of nanofluid based photovoltaic thermal (PV/T) system for superior electrical efficiency and hydrogen production. Fuel. 2021;286:119422.

    Article  CAS  Google Scholar 

  22. Venkatesh T, Manikandan S, Selvam C, Harish S. Performance enhancement of hybrid solar PV/T system with graphene based nanofluids. Int Commun Heat Mass Transfer. 2022;130:105794.

    Article  CAS  Google Scholar 

  23. Shankara R, Banapurmath N, D’Souza A, Sajjan A, Ayachit N, Khan T, Badruddin I, Kamangar S. An insight into the performance of radiator system using ethylene glycol-water based graphene oxide nanofluids. Alex Eng J. 2022;61:5155–67. https://doi.org/10.1016/j.aej.2021.10.037.

    Article  Google Scholar 

  24. Bahiraei M, Heshmatian S. Graphene family nanofluids: a critical review and future research directions. Energy Convers Manage. 2019;196:1222–56.

    Article  CAS  Google Scholar 

  25. Chiam HW, Azmi WH, Usri NA, Mamat R, Adam NM. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp Thermal Fluid Sci. 2017;81:420–9. https://doi.org/10.1016/j.expthermflusci.2016.09.013.

    Article  CAS  Google Scholar 

  26. Esfe MH, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Arani AAA, Dahari M. Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Transfer. 2017;82:154–60.

    Article  Google Scholar 

  27. Adun H, Kavaz D, Dagbasi M. Review of ternary hybrid nanofluid: synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects. J Cleaner Prod. 2021;328:129525. https://doi.org/10.1016/j.jclepro.2021.129525.

    Article  CAS  Google Scholar 

  28. Tiwari AK, Kumar V, Said Z, Paliwal HK. A review on the application of hybrid nanofluids for parabolic trough collector: recent progress and outlook. J Cleaner Prod. 2021;292:126031. https://doi.org/10.1016/j.jclepro.2021.126031.

    Article  CAS  Google Scholar 

  29. Sandhya M, Ramasamy D, Sudhakar K, Kadirgama K, Samykano M, Harun WSW, Najafi G, Mofijur M, Mazlan M. A systematic review on graphene-based nanofluids application in renewable energy systems: preparation, characterization, and thermophysical properties. Sustain Energy Technol Assess. 2021;44:101058. https://doi.org/10.1016/j.seta.2021.101058.

    Article  Google Scholar 

  30. Sati P, Shende RC, Ramaprabhu S. An experimental study on thermal conductivity enhancement of DI water-EG based ZnO(CuO)/graphene wrapped carbon nanotubes nanofluids. Thermochim Acta. 2018;666:75–81. https://doi.org/10.1016/j.tca.2018.06.008.

    Article  CAS  Google Scholar 

  31. Sunil J, Vignesh J, Vettumperumal R, Maheswaran R, Raja RAA. The thermal properties of CaO-nanofluids. Vacuum. 2019;161:383–8. https://doi.org/10.1016/j.vacuum.2019.01.010.

    Article  CAS  Google Scholar 

  32. Fazal MA, Rubaiee S. Progresses of PV cell technology: feasibility of building materials, cost, performance, and stability. Sol Energy. 2023;258:203–19. https://doi.org/10.1016/j.solener.2023.04.066.

    Article  Google Scholar 

  33. Rubaiee S, Fazal MA. Efficiency enhancement of photovoltaic solar system by integrating multi-pipe copper frame filled with ZnO doped phase change material. MRS Energy Sustain. 2023. https://doi.org/10.1557/s43581-023-00063-1.

    Article  Google Scholar 

  34. Rahman MM, Hasanuzzamana M, Rahim NA. Effects of operational conditions on the energy efficiency of Photovoltaic modules operating in Malaysia. J Clean Prod. 2017;143:912–24. https://doi.org/10.1016/j.jclepro.2016.12.029.

    Article  CAS  Google Scholar 

  35. Nasrin R, Hasanuzzaman M, Rahim NA. Effect of nanofluids on heat transfer and cooling system of the photovoltaic/thermal performance. Int J Numer Method H. 2019;2019(29):1920–46. https://doi.org/10.1108/HFF-04-2018-0174.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), University of Jeddah, Jeddah (Grant No. UJ-02-004-ICGR). The authors gratefully acknowledge the technical and financial support of DSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Rubaiee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubaiee, S., Yahya, S.M., Fazal, M.A. et al. Characterization of Al2O3, TiO2, hybrid Al2O3-TiO2 and graphene oxide nanofluids and their performance evaluations in photovoltaic thermal system. J Therm Anal Calorim 148, 11467–11477 (2023). https://doi.org/10.1007/s10973-023-12492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12492-8

Keywords

Navigation