Skip to main content
Log in

MHD mixed convection of non-Newtonian power-law ferrofluid in a wavy enclosure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study focuses on numerical simulations of magnetohydrodynamic mixed convection and entropy formation in a lid-driven wavy enclosure filled with non-Newtonian power-law ferrofluid. The physical model is a two-dimensional wavy square chamber with thermally adiabatic horizontal boundaries, while the right and left vertical walls maintain a constant temperature of the \(T_{\rm C}\) and \(T_{\rm H}\), respectively. For mapping the wavy domain to a simple square domain the Cartesian curvilinear coordinates are used. The governing equations are solved using the finite volume method to explore the mixed convection characteristics in terms of heat transport, velocity, streamlines, isotherms, and entropy formation. Pertinent non-dimensional parameters, such as the Reynolds number (Re), Hartmann number (Ha), power-law index (n), ferroparticle volume fraction (\(\phi \)), and a fixed Prandtl number (\({\rm Pr} = 6.8377\)), are used for the numerical simulation. According to the findings, the mean Nusselt numbers (\({\overline{\rm Nu}}\)) grow when Ha is reduced and Re, n and \(\phi \) are augmented, and the highest magnitude of \({\overline{\rm Nu}}\) is found, while \(4\%\) ferroparticles are added to the base fluid. The influence of key variables on total entropy production \((E_{\rm s})_{\rm t}\) reduced by raising Ha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data are available based on request.

Abbreviations

Be:

Bejan number (local)

\(B_0\) :

Magnetic force, \({\rm kg}\,{\rm s}^{-2}\,{\rm A}^{-1}\)

\(C_{\rm p}\) :

Specific heat, \({\rm Jkg}^{-1}\,{\rm K}^{-1}\)

E :

Entropy production, \({\rm J m}^{-3}\,{\rm s}^{-1}\,{\rm K}^{-1}\)

Gr:

Grashof number

g :

Gravitational acceleration, \({\rm ms}^{-2}\)

Ha:

Hartmann number

k :

Thermal conductivity, \({\rm J m}^{-1}\,{\rm s}^{-1}\,{\rm K}^{-1}\)

Nu:

Nusselt number (local)

\({\overline{\rm Nu}}\) :

Nusselt number (average)

Pr:

Prandtl number

Re:

Reynolds number

Ri :

Richardson number

T :

Temperature, K

\(T_{\rm o}\) :

Bulk temperature, K

\(\bar{u}\),\(\bar{v}\) :

Dimensional mid-x and mid-y velocity components, \({\rm ms}^{-1}\)

uv :

Dimensionless mid-x and mid-y velocity components

\(\bar{x},\bar{y}\) :

Dimensional coordinates, m

xy :

Dimensionless coordinates

\(\alpha \) :

Thermal diffusivity, \({\rm m}^2{\rm s}^{-1}\)

\(\beta \) :

Thermal expansion coefficient, \({\rm K}^{-1}\)

\(\mu \) :

Dynamic viscosity, \({\rm kg m}^{-1}{\rm s}^{-1}\)

\(\nu \) :

Kinematic viscosity, \({\rm m}^2 {\rm s}^{-1}\)

\(\rho \) :

Fluid density, \({\rm kg m}^{-3}\)

\(\sigma \) :

Electrical conductivity, \({\rm Am}^{-2}\)

\(\phi \) :

Volume fraction

\(\psi \) :

Dimensionless stream function

References

  1. Turkyilmazoglu M. Exponential nonuniform wall heating of a square cavity and natural convection. Chin J Phys. 2022;77:2122–35.

    Google Scholar 

  2. Anee MJ, Siddiqa S, Hasan MF, Molla MM. Lattice Boltzmann simulation of natural convection of ethylene glycol-alumina nanofluid in a C-shaped enclosure with MFD viscosity through a parallel computing platform and quantitative parametric assessment. Phys Scr. 2023;98: 095203.

    Google Scholar 

  3. Mahapatra SK. Mixed convection inside a differentially heated enclosure and its interaction with radiation-an exhaustive study. Heat Transf Eng. 2014;35(1):74–93.

    CAS  Google Scholar 

  4. Turkyilmazoglu M. Lid-driven butterfly cavity for a controllable viscous flow. J Fluids Eng. 2022;144(9): 094501.

    CAS  Google Scholar 

  5. Atashafrooz M. The effects of buoyancy force on mixed convection heat transfer of MHD nanofluid flow and entropy generation in an inclined duct with separation considering Brownian motion effects. J Therm Anal Calorim. 2019;138(5):3109–26.

    CAS  Google Scholar 

  6. Shahid H, Yaqoob I, Khan WA, Aslam M. Multi-relaxation-time lattice Boltzmann analysis of lid-driven rectangular cavity subject to various obstacle configurations. Int Commun Heat Mass Transf. 2021;129: 105658.

    Google Scholar 

  7. Hemmat Esfe M, Saedodin S, Hasani Malekshah E, Babaie A, Rostamian H. Mixed convection inside lid-driven cavities filled with nanofluids. J Therm Anal Calorim. 2019;135(1):813–59.

    CAS  Google Scholar 

  8. Bhoite MT, Narasimham G, Murthy MK. Mixed convection in a shallow enclosure with a series of heat generating components. Int J Therm Sci. 2005;44(2):121–35.

    Google Scholar 

  9. Oztop HF, Dagtekin I. Mixed convection in two-sided lid-driven differentially heated square cavity. Int J Heat Mass Transf. 2004;47(8–9):1761–9.

    Google Scholar 

  10. Srivastava N, Singh A. Mixed convection in a composite system bounded by vertical walls. J Appl Fluid Mech. 2010;3:65–75.

    Google Scholar 

  11. Shankar P, Deshpande M. Fluid mechanics in the driven cavity. Annu Rev Fluid Mech. 2000;32(1):93–136.

    Google Scholar 

  12. Mahalakshmi T, Nithyadevi N, Oztop HF, Abu-Hamdeh N. Mhd mixed convective heat transfer in a lid-driven enclosure filled with ag-water nanofluid with center heater. Int J Mech Sci. 2018;142:407–19.

    Google Scholar 

  13. Chamkha AJ. Hydromagnetic combined convection flow in a vertical lid-driven cavity with internal heat generation or absorption. Numer Heat Transf Part A Appl. 2002;41(5):529–46.

    Google Scholar 

  14. Billah M, Rahman M, Sharif UM, Rahim N, Saidur R, Hasanuzzaman M. Numerical analysis of fluid flow due to mixed convection in a lid-driven cavity having a heated circular hollow cylinder. Int Commun Heat Mass Transf. 2011;38(8):1093–103.

    Google Scholar 

  15. Nazari S, Ellahi R, Sarafraz M, Safaei MR, Asgari A, Akbari OA. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim. 2020;140(3):1121–45.

    CAS  Google Scholar 

  16. Ahmed SE, Mansour M, Hussein AK, Mallikarjuna B, Almeshaal MA, Kolsi L. MHD mixed convection in an inclined cavity containing adiabatic obstacle and filled with Cu-water nanofluid in the presence of the heat generation and partial slip. J Therm Anal Calorim. 2019;138(2):1443–60.

    CAS  Google Scholar 

  17. Sheremet MA, Pop I. Mixed convection in a lid-driven square cavity filled by a nanofluid: Buongiorno’s mathematical model. Appl Math Comput. 2015;266:792–808.

    Google Scholar 

  18. Gibanov NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid. Int J Heat Mass Transf. 2017;114:1086–97.

    CAS  Google Scholar 

  19. Gibanov NS, Sheremet MA, Oztop HF, Nusier OK. Convective heat transfer of ferrofluid in a lid-driven cavity with a heat-conducting solid backward step under the effect of a variable magnetic field. Numer Heat Transf Part A Appl. 2017;72(1):54–67.

    CAS  Google Scholar 

  20. Selimefendigil F, Ismael MA, Chamkha AJ. Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder. Int J Mech Sci. 2017;124:95–108.

    Google Scholar 

  21. Hussain S, Jamal M, Maatki C, Ghachem K, Kolsi L. MHD mixed convection of Al\(_2\)O\(_3\)-Cu-water hybrid nanofluid in a wavy channel with incorporated fixed cylinder. J Therm Anal Calorim. 2021;144(6):2219–33.

    CAS  Google Scholar 

  22. Yang L, Du K. A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J Therm Anal Calorim. 2020;140(5):2033–54.

    CAS  Google Scholar 

  23. Chamkha A, Rashad A, Mansour M, Armaghani T, Ghalambaz M. Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip. Phys Fluids. 2017;29(5): 052001.

    Google Scholar 

  24. Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;137(1):267–87.

    CAS  Google Scholar 

  25. Azizul FM, Alsabery AI, Hashim I. Heatlines visualisation of mixed convection flow in a wavy heated cavity filled with nanofluids and having an inner solid block. Int J Mech Sci. 2020;175: 105529.

    Google Scholar 

  26. Selimefendigil F, Öztop HF. MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation. Physica A. 2019;534: 122144.

    CAS  Google Scholar 

  27. Çolak E, Öztop HF, Ekici Ö. MHD mixed convection in a chamfered lid-driven cavity with partial heating. Int J Heat Mass Transf. 2020;156: 119901.

    Google Scholar 

  28. Taghikhani MA. Cu-water nanofluid MHD mixed convection in a lid-driven cavity with two sinusoidal heat sources considering joule heating effect. Int J Thermophys. 2019;40(4):1–27.

    CAS  Google Scholar 

  29. Aboud ED, Rashid HK, Jassim HM, Ahmed SY, Khafaji SOW, Hamzah HK, Ali FH. MHD effect on mixed convection of annulus circular enclosure filled with Non-Newtonian nanofluid. Heliyon. 2020;6(4): e03773.

    PubMed  PubMed Central  Google Scholar 

  30. Nazari S, Akbari E. Numerical investigation of non-Newtonian nanofluid mixed convection in a two-opposite direction lid-driven cavity with variable properties. Heat Transf-Asian Res. 2019;48(2):601–23.

    Google Scholar 

  31. Ali I, Alsabery AI, Bakar N, Roslan R. Mixed convection in a double lid-driven cavity filled with hybrid nanofluid by using finite volume method. Symmetry. 2020;12(12):1977.

    CAS  Google Scholar 

  32. Qasim M, Ashraf MU, Lu D, Hussanan A. Influence of differently shaped copper nanoparticles in mixed convection flow through a curved wavy channel. Alex Eng J. 2021;60(3):3305–14.

    Google Scholar 

  33. Xiong P-Y, Hamid A, Iqbal K, Irfan M, Khan M. Numerical simulation of mixed convection flow and heat transfer in the lid-driven triangular cavity with different obstacle configurations. Int Commun Heat Mass Transf. 2021;123: 105202.

    Google Scholar 

  34. Barnoon P, Toghraie D, Dehkordi RB, Abed H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J Magn Magn Mater. 2019;483:224–48.

    CAS  Google Scholar 

  35. Kahalerras H, Fersadou B, Nessab W. Mixed convection heat transfer and entropy generation analysis of copper-water nanofluid in a vertical channel with non-uniform heating. SN Appl Sci. 2020;2(1):1–12.

    Google Scholar 

  36. Afsana S, Molla MM, Nag P, Saha LK, Siddiqa S. MHD natural convection and entropy generation of non-Newtonian ferrofluid in a wavy enclosure. Int J Mech Sci. 2021;198: 106350.

    Google Scholar 

  37. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.

    CAS  Google Scholar 

  38. Ghanbarpour M, Haghigi EB, Khodabandeh R. Thermal properties and rheological behavior of water based Al\(_2\)O\(_3\) nanofluid as a heat transfer fluid. Exp Thermal Fluid Sci. 2014;53:227–35.

    CAS  Google Scholar 

  39. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2016;103:955–64.

    Google Scholar 

  40. Ghanbarpour M, Haghigi EB, Khodabandeh R. Thermal properties and rheological behavior of water based Al\(_2\)O\(_3\) nanofluid as a heat transfer fluid. Exp Thermal Fluid Sci. 2014;53:227–35.

    CAS  Google Scholar 

  41. Kalidasan K, Velkennedy R, Kanna PR. Natural convection heat transfer enhancement using nanofluid and time-variant temperature on the square enclosure with diagonally constructed twin adiabatic blocks. Appl Therm Eng. 2016;92:219–35.

    CAS  Google Scholar 

  42. Mahalakshmi T, Nithyadevi N, Oztop HF, Abu-Hamdeh N. MHD mixed convective heat transfer in a lid-driven enclosure filled with Ag-water nanofluid with center heater. Int J Mech Sci. 2018;142:407–19.

    Google Scholar 

  43. Javed T, Siddiqui MA. Effect of MHD on heat transfer through ferrofluid inside a square cavity containing obstacle/heat source. Int J Therm Sci. 2018;125:419–27.

    CAS  Google Scholar 

  44. Sheremet MA, Oztop H, Pop I, Al-Salem K. MHD free convection in a wavy open porous tall cavity filled with nanofluids under an effect of corner heater. Int J Heat Mass Transf. 2016;103:955–64.

    CAS  Google Scholar 

  45. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571–571.

    CAS  Google Scholar 

  46. Mahalakshmi T, Nithyadevi N, Oztop HF, Abu-Hamdeh N. Natural convective heat transfer of Ag-water nanofluid flow inside enclosure with center heater and bottom heat source. Chin J Phys. 2018;56(4):1497–507.

    CAS  Google Scholar 

  47. Dogonchi A, et al. Heat transfer by natural convection of Fe\(_3\)O\(_4\)-water nanofluid in an annulus between a wavy circular cylinder and a rhombus. Int J Heat Mass Transf. 2019;130:320–32.

    Google Scholar 

  48. Hatami M. Cross-sectional heat transfer of hot tubes in a wavy porous channel filled by Fe\(_3\)O\(_4\)-water nanofluid under a variable magnetic field. Eur Phys J Plus. 2018;133(9):374.

    Google Scholar 

  49. Shenoy A, Sheremet M, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media, and nanofluids. Boca Raton: CRC Press; 2016.

    Google Scholar 

  50. Sheikholeslami M, Rashidi MM. Effect of space dependent magnetic field on free convection of Fe\(_3\)O\(_4\)-water nanofluid. J Taiwan Inst Chem Eng. 2015;56:6–15.

    CAS  Google Scholar 

  51. Thohura S, Molla M, Sarker M, Alam M, et al. Numerical simulation of non-Newtonian power-law fluid flow in a lid-driven skewed cavity. Int J Appl Comput Math. 2019;5(1):1–29.

    Google Scholar 

  52. Thohura S, Molla MM, Sarker M. Bingham fluid flow simulation in a lid-driven skewed cavity using the finite-volume method. Int J Comput Math. 2020;97(6):1212–33.

    Google Scholar 

  53. Mehmood K, Hussain S, Sagheer M. Mixed convection in alumina-water nanofluid filled lid-driven square cavity with an isothermally heated square blockage inside with magnetic field effect: Introduction. Int J Heat Mass Transf. 2017;109:397–409.

    CAS  Google Scholar 

  54. Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. Boca Raton: CRC Press; 2013.

    Google Scholar 

  55. Neofytou P. A 3rd order upwind finite volume method for generalised Newtonian fluid flows. Adv Eng Softw. 2005;36(10):664–80.

    Google Scholar 

  56. Ghia U, Ghia KN, Shin C. High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys. 1982;48(3):387–411.

    Google Scholar 

  57. Khanafer KM, Chamkha AJ. Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int J Heat Mass Transf. 1999;42(13):2465–81.

    CAS  Google Scholar 

  58. Iwatsu R, Hyun JM, Kuwahara K. Mixed convection in a driven cavity with a stable vertical temperature gradient. Int J Heat Mass Transf. 1993;36(6):1601–8.

    CAS  Google Scholar 

  59. Toudja N, Labsi N, Benkahla YK, Ouyahia S-E, Benzema M. Thermosolutal mixed convection in a lid-driven irregular hexagon cavity filled with MWCNT–MgO (15–85%)/CMC non-Newtonian hybrid nanofluid. J Therm Anal Calorim 2020;1–24.

  60. Rahman A, Nag P, Molla MM, Hassan S. Magnetic field effects on natural convection and entropy generation of non-Newtonian fluids using multiple-relaxation-time lattice Boltzmann method. Int J Mod Phys C. 2021;32(01):2150015.

    CAS  Google Scholar 

  61. Rahman A, Redwan DA, Thohura S, Kamrujjaman M, Molla MM. Natural convection and entropy generation of non-Newtonian nanofluids with different angles of external magnetic field using GPU accelerated MRT-LBM. Case Stud Therm Eng. 2022;30: 101769.

    Google Scholar 

  62. Guo Y, Bennacer R, Shen S, Ameziani D, Bouzidi M. Simulation of mixed convection in slender rectangular cavity with lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow.

  63. Hossain A, Nag P, Molla MM. Mesoscopic simulation of MHD mixed convection of non-Newtonian ferrofluids with a non-uniformly heated plate in an enclosure. Phys Scr. 2022;98(1): 015008.

    Google Scholar 

  64. Ashorynejad HR, Mohamad AA, Sheikholeslami M. Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int J Therm Sci. 2013;64:240–50.

    CAS  Google Scholar 

  65. Oueslati F, Ben-Beya B. Magnetoconvection and irreversibility phenomena within a lid driven cavity filled with liquid metal under magnetic field. Front Heat Mass Transf (FHMT) 8.

  66. Mehryan S, Izadi M, Namazian Z, Chamkha AJ. Natural convection of multi-walled carbon nanotube-Fe\(_3\)O\(_4\)/water magnetic hybrid nanofluid flowing in porous medium considering the impacts of magnetic field-dependent viscosity. J Therm Anal Calorim. 2019;138(2):1541–55.

    CAS  Google Scholar 

  67. Bejan A. Second law analysis in heat transfer. Energy. 1980;5(8–9):720–32.

    Google Scholar 

  68. Hossain A, Molla MM, Kamrujjaman M, Mohebujjaman M, Saha SC. MHD Mixed convection of non-Newtonian Bingham nanofluid in a wavy enclosure with temperature-dependent thermophysical properties: a sensitivity analysis by response surface methodology. Energies. 2023;16(11):4408.

    CAS  Google Scholar 

  69. Jawairia S, Raza J. Optimization of heat transfer rate in a moving porous fin under radiation and natural convection by response surface methodology: Sensitivity analysis. Chem Eng J Adv. 2022;11: 100304.

    Google Scholar 

Download references

Acknowledgements

This research is conducted by using the High-Performance Computing (HPC) facility of the School of Engineering and Physical Sciences (SEPS), North South University (NSU), Bangladesh. M. M. Molla would like to thank the NVIDIA Corporation, USA, for granting the TESLA K40 GPU.

Funding

The authors acknowledge gratefully to the North South University for the financial support as a faculty research grant  (Grant No.: CTRG-22-SEPS-09). The last authors also acknowledge the Ministry of Science and Technology (MOST), the government of Bangladesh, for providing the financial support for this research  (Grant No.: EAS/SRG-222427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mamun Molla.

Ethics declarations

Conflicts of Interest

There are no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, A., Molla, M. . MHD mixed convection of non-Newtonian power-law ferrofluid in a wavy enclosure. J Therm Anal Calorim 148, 11871–11892 (2023). https://doi.org/10.1007/s10973-023-12485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12485-7

Keywords

Navigation