Skip to main content
Log in

Investigation of swirling impinging jet at low nozzle to plate distances

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Flow field and heat transfer of an impinging swirling jet at low nozzle-to-plate distances have been investigated numerically for three different cases with six different turbulence models. The effects of Reynolds number (2100, 4100, 6100, 8100) and dimensionless nozzle-to-plate distance (H/D = 0.25, 0.5, 0.75, 1) on flow field and heat transfer of the swirling jet are studied parametrically. It is noted that the results of the cases employed exhibit sensitivity to the height of the computational domain defined on the impingement plate, particularly at low nozzle-to-plate distances. It is also seen that one of the cases used is in good agreement with the experimental results by employing Realizable kε turbulence model. Parametric analysis results show that the theoretical swirl number decreases with increasing Reynolds number at constant H/D and raises for H/D < 0.75. With the decrease in the Reynolds number from 8100 to 2100, although the H/D loses gradually effect on the heat transfer, H/D = 0.25 continues its effect. It is observed that the pressure peaks and the subatmospheric pressure on the impingement plate change with the nozzle-to-plate distance and Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Height of computational domain/mm

C f :

Friction coefficient

C p :

Specific heat of fluid/J kg1 K1

d :

Perpendicular distance from the center of the swirl generator to the slot/mm

D :

Nozzle diameter/mm

h x :

Local heat transfer coefficient/W m2 K1

G :

Ratio of the maximum tangential velocity to axial velocity at nozzle exit

H :

Distance between nozzle exit and impingement plate/mm

k :

Turbulence kinetic energy/m2 s2

k t :

Thermal conductivity of fluid/W m1 K1

L :

Length of pipe/mm

Nux :

Local Nusselt number

Nuavg :

Average Nusselt number

\(q\mathrm{^{\prime}}\mathrm{^{\prime}}\) :

Heat flux/W m2

\({\mathrm{Pr}}_{\mathrm{t}}\) :

Turbulence Prandtl number

R :

Radius of swirl generator/mm

Re:

Reynolds number

S g :

Geometrical swirl number

S m :

Theoretical swirl number

T :

Temperature/K

T j :

Inlet jet temperature/K

u :

Velocitiy in x-direction/m s1

U :

Inlet velocity/m s1

v :

Velocitiy in y-direction/m s1

w :

Tangential velocitiy/m s1

x :

Distance along the x-axis from stagnation point/mm

z :

Distance along the z-axis from stagnation point/mm

y + :

Non-dimensional distance from the wall to the first mesh node

ɛ :

Dissipation rate of turbulent kinetic energy/m2 s3

μ :

Dynamic viscosity of fluid/kg m1 s1

μ t :

Turbulence viscosity of fluid/kg m1 s1

θ :

Girdap açısı/°

ρ :

Density of fluid/kg m3

ω :

Specific dissipation rate/s1

References

  1. Öztekin E, Aydin O, Avcı M. Hydrodynamics of a turbulent slot jet flow impinging on a concave surface. Int Commun Heat Mass Transf. 2012;39(10):1631–8.

    Google Scholar 

  2. Nuntadusit C, Wae-hayee M, Bunyajitradulya A, Eiamsa-ard S. Visualization of flow and heat transfer characteristics for swirling impinging jet. Int Commun Heat Mass Transf. 2012;39(5):640–8.

    CAS  Google Scholar 

  3. Gao X, Sundén B. Experimental investigation of the heat transfer characteristics of confined impinging slot jets. Exp Heat Transf. 2003;16(1):1–18.

    CAS  Google Scholar 

  4. Zuckerman N, Lior N. Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv Heat Transf. 2006;39:565–631.

    CAS  Google Scholar 

  5. Wae-hayee M, Yeranee K, Suksuwan W, Alimalbari A, Sae-ung S, Nuntadusit C. Heat transfer enhancement in rotary drum dryer by incorporating jet impingement to accelerate drying rate. Dry Technol. 2021;39(10):1314–24.

    Google Scholar 

  6. Kurnia JC, Sasmito AP, Tong W, Mujumdar AS. Energy-efficient thermal drying using impinging-jets with time-varying heat input—a computational study. J Food Eng. 2013;114(2):269–77.

    Google Scholar 

  7. Colucci DW, Viskanta R. Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Exp Thermal Fluid Sci. 1996;13(1):71–80.

    CAS  Google Scholar 

  8. Polat S. Heat and mass transfer in impingement drying. Dry Technol. 2007;11(6):1147–76.

    Google Scholar 

  9. Fairweather M, Hargrave G. Experimental investigation of an axisymmetric, impinging turbulent jet. 2. Scalar field. Exp Fluids. 2002;33(4):539–44.

    Google Scholar 

  10. Baydar E, Ozmen Y. An experimental and numerical investigation on a confined impinging air jet at high Reynolds numbers. Appl Therm Eng. 2004;25(2–3):409–42.

    Google Scholar 

  11. Sagot B, Antonini G, Christgen A, Buron F. Jet impingement heat transfer on a flat plate at a constant wall temperature. Int J Therm Sci. 2008;47(12):1610–9.

    Google Scholar 

  12. Craft TJ, Graham LJW, Launder BE. Impinging jet studies for turbulence model assessment-II. An examination of the performance of four turbulence models. Int J Heat Mass Transf. 1993;36(10):1096–8.

    Google Scholar 

  13. Hattori H, Nagano Y. Direct numerical simulation of turbulent heat transfer in plane impinging jet. Int J Heat Fluid Flow. 2004;25(5):749–58.

    Google Scholar 

  14. Jaramillo JE, Trias FX, Gorobets A, Pérez-Segarra CD, Oliva A. DNS and RANS modelling of a turbulent plane impinging jet. Int J Heat Mass Transf. 2012;55(4):789–801.

    Google Scholar 

  15. Gao S, Voke PR. Large-eddy simulation of turbulent heat transport in enclosed impinging jets. Int J Heat Fluid Flow. 1995;16(5):349–56.

    CAS  Google Scholar 

  16. Beauberti F, Viazzo S. Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers. Int J Heat Fluid Flow. 2003;24(4):512–9.

    Google Scholar 

  17. Hadžıabdıć M, Hanjalıć K. Vortical structures and heat transfer in a round impinging jet. J Fluid Mech. 2008;596:221–60.

    Google Scholar 

  18. Uddin N, Neumann SO, Weigand B, Younis BA. Large-eddy simulations and heat-flux modeling in a turbulent impinging jet. Numer Heat Transf A. 2009;55(10):906–30.

    Google Scholar 

  19. Shukla AK, Dewan A. OpenFOAM based LES of slot jet impingement heat transfer at low nozzle to plate spacing using four SGS models. Heat Mass Transf. 2019;55(3):911–31.

    CAS  Google Scholar 

  20. Hofmann HM, Kind M, Martin H. Measurements on steady state heat transfer and flow structure and new correlations for heat and mass transfer in submerged impinging jets. Int J Heat Mass Transf. 2007;50(19–20):3957–65.

    Google Scholar 

  21. Dutta R, Dewan A, Srinivasan B. Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer. Int J Heat Mass Transf. 2013;65:750–64.

    Google Scholar 

  22. Behnia M, Parneix S, Durbin PA. Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate. Int J Heat Mass Transf. 1998;41(12):1845–55.

    CAS  Google Scholar 

  23. Kubacki S, Rokicki J, Dick E. Hybrid RANS/LES computations of plane impinging jets with DES and PANS models. Int J Heat Fluid Flow. 2013;44:596–609.

    Google Scholar 

  24. Taghinia J, Rahman MM, Siikonen T. Numerical investigation of twin-jet impingement with hybrid-type turbulence modeling. Appl Therm Eng. 2014;73(1):650–9.

    Google Scholar 

  25. Kubacki S, Dick E. Hybrid RANS/LES of flow and heat transfer in round impinging jets. Int J Heat Fluid Flow. 2011;32(3):631–51.

    Google Scholar 

  26. Xu L, Yang T, Sun Y, Xi L, Gao J, Li Y, Li J. Flow and heat transfer characteristics of a swirling impinging jet issuing from a threaded nozzle. Case Stud Therm Eng. 2021. https://doi.org/10.1016/j.csite.2021.100970.

    Article  Google Scholar 

  27. Markal B. The effect of total flowrate on the cooling performance of swirling coaxial impinging jets. Heat Mass Transf. 2019;55(11):3275–88.

    Google Scholar 

  28. Markal B. Experimental investigation of heat transfer characteristics and wall pressure distribution of swirling coaxial confined impinging air jets. Int J Heat Mass Transf. 2018;124:517–32.

    Google Scholar 

  29. Wongcharee K, Kunnarak K, Chuwattanakul V, Eiamsa-ard S. Heat transfer rate of swirling impinging jets issuing from a twisted tetra-lobed nozzle. Case Stud Therm Eng. 2020. https://doi.org/10.1016/j.csite.2020.100780.

    Article  Google Scholar 

  30. Huang L, El-Genk MS. Heat transfer and flow visualization experiments of swirling, multi-channel, and conventional impinging jets. Int J Heat Mass Transf. 1998;41(3):583–600.

    Google Scholar 

  31. Eiamsa-ard S, Nanan K, Wongcharee K. Heat transfer visualization of co/counter-dual swirling impinging jets by thermochromic liquid crystal method. Int J Heat Mass Transf. 2015;86:600–21.

    Google Scholar 

  32. Ahmed ZU, Al-Abdeli YM, Guzzomi FG. Heat transfer characteristics of swirling and non-swirling impinging turbulent jets. Int J Heat Mass Transf. 2016;102:991–1003.

    Google Scholar 

  33. Wang C, Wang Z, Zhang J. Flow and heat transfer in a rotating cavity with de-swirl nozzles: an LES study. Int Commun Heat Mass Transf. 2020. https://doi.org/10.1016/j.icheatmasstransfer.2020.104816.

    Article  Google Scholar 

  34. Ikhlaq M, Al-Abdeli YM, Khiadani M. Transient heat transfer characteristics of swirling and non-swirling turbulent impinging jets. Exp Therm Fluid Sci. 2019. https://doi.org/10.1016/j.expthermflusci.2019.109917.

    Article  Google Scholar 

  35. Fénot M, Dorignac E, Lalizel G. Heat transfer and flow structure of a multichannel impinging jet. Int J Therm Sci. 2015;90:323–38.

    Google Scholar 

  36. Ianiro A, Cardone G. Heat transfer rate and uniformity in multichannel swirling impinging jets. Appl Therm Eng. 2012;49:89–98.

    Google Scholar 

  37. Ahmed ZU, Al-Abdeli YM, Matthews MT. The effect of inflow conditions on the development of non-swirling versus swirling impinging turbulent jets. Comput Fluids. 2015;118:255–73.

    Google Scholar 

  38. Amini Y, Mokhtari M, Haghshenasfard M, Barzegar GM. Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique. Case Stud Therm Eng. 2015;6:104–15.

    Google Scholar 

  39. Kotb A, Askar H, Saad H. On the impingement of heat transfer using swirled air jets. Front Mech Eng. 2023. https://doi.org/10.3389/fmech.2023.1120985.

    Article  Google Scholar 

  40. Suja SB, Islam MR, Ahmed ZU. Swirling jet impingements for thermal management of high concentrator solar cells using nanofluids. Int J Thermofluids. 2023. https://doi.org/10.1016/j.ijft.2023.100387.

    Article  Google Scholar 

  41. Bilen K, Bakirci K, Yapici S, Yavuz T. Heat transfer from a plate impinging swirl jet. Int J Energy Res. 2002;26(4):305–20.

    CAS  Google Scholar 

  42. Lee DH, Won SY, Kim YT, Chung YS. Turbulent heat transfer from a flat surface to a swirling round impinging jet. Int J Heat Mass Transf. 2002;45:223–7.

    Google Scholar 

  43. Owsenek BL, Czıesla T, Mıtra NK, Bıswas G. Numerical investigation of heat transfer in impinging axial and radial jets with superimposed swirl. Int J Heat Mass Transf. 1996;40:141–7.

    Google Scholar 

  44. Afroz F, Sharif MAR. Numerical investigation of heat transfer from a plane surface due to turbulent annular swirling jet impingement. Int J Therm Sci. 2020. https://doi.org/10.1016/j.ijthermalsci.2019.

    Article  Google Scholar 

  45. Launder BE, Spalding DB. Lectures in mathematical models of turbulence. New York: Academic; 1972. p. 176.

    Google Scholar 

  46. Yakhot V, Orszag SA. Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput. 1986;1(1):3–51.

    Google Scholar 

  47. ANSYS Fluent Theory Guide 15, Canonsburg, 2013.

  48. Wilcox D. Turbulence modeling for CFD. 2nd ed. California: DCW Industries; 1994.

    Google Scholar 

  49. Menter FR. Zonal two equation kw turbulence models for aerodynamic flows. AIAA Meeting Paper. 1993. https://doi.org/10.2514/6.1993-2906.

    Article  Google Scholar 

  50. “Solver Settings Customer Training Material,” 2010.

  51. “ANSYS FLUENT 12.0 Theory Guide-18.4.3 Pressure-Velocity Coupling.” https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node373.htm. Accessed 20 Jul 2023.

  52. Ahmed ZU, Al-Abdeli YM, Guzzomi FG. Flow field and thermal behaviour in swirling and non-swirling turbulent impinging jets. Int J Therm Sci. 2017;114:241–56.

    CAS  Google Scholar 

  53. Fairweather M, Hargrave G. Experimental investigation of an axisymmetric, impinging turbulent jet. 1. Velocity field. Exp Fluids. 2002;33(3):464–71.

    Google Scholar 

  54. Xu L, Yang T, Sun Y, Xi L, Gao J, Li Y. Flow and heat transfer characteristics of a swirling impinging jet issuing from a threaded Nozzle of 45 degrees. Energies. 2021. https://doi.org/10.3390/en14248412.

    Article  Google Scholar 

  55. Hofmann HM, Kaiser R, Kind M, Martin H. Calculations of steady and pulsating impinging jets—an assessment of 13 widely used turbulence models. Numer Heat Transf B Fundam. 2007;51(6):565–83.

    Google Scholar 

  56. Ahmed ZU. An experimental and numerical study of surface interactions in turbulent swirling jets. 1968. http://ro.ecu.edu.au/theses/1790. Accessed: 18 Jul 2023.

  57. Debnath S, Khan MHU, Ahmed ZU. Turbulent swirling impinging jet arrays: A numerical study on fluid flow and heat transfer. Therm Sci Eng Prog. 2020. https://doi.org/10.1016/j.tsep.2020.100580.

    Article  Google Scholar 

  58. Ahmed ZU, Al-Abdeli YM, Guzzomi FG. Impingement pressure characteristics of swirling and non-swirling turbulent jets. Exp Therm Fluid Sci. 2015;68:722–32.

    Google Scholar 

  59. Xu L, Xiong Y, Xi L, Gao J, Li Y, Zhao Z. Numerical simulation of swirling ımpinging jet ıssuing from a threaded hole under ınclined condition. Entropy. 2019. https://doi.org/10.3390/e22010015.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gupta AK, Lilley DG, Syred N. Swirl flows. England: Abacus Press; 1984.

    Google Scholar 

  61. Ortega-Casanova J. CFD and correlations of the heat transfer from a wall at constant temperature to an impinging swirling jet. Int J Heat Mass Transf. 2012;55(21–22):5836–45.

    Google Scholar 

  62. Nozaki A, Igarashi Y, Hishida K. Heat transfer mechanism of a swirling impinging jet in a stagnation region. Heat Transf Asian Res. 2003;32(8):663–73.

    Google Scholar 

  63. Xu L, Lan J, Ma Y, Gao J, Li Y. Numerical study on heat transfer by swirling impinging jets issuing from a screw-thread nozzle. Int J Heat Mass Transf. 2017;115:232–7.

    Google Scholar 

  64. Jambunathan K, Lai E, Moss MA, Button BL. A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow. 1992;13(2):106–15.

    CAS  Google Scholar 

  65. Gaunter JW, Livingood JNB, Hrycak P. Survey of Literature on Flow Characteristics of a Single Turbulent Jet. NASA.Ohio: Lewis Resedrch Center;1970.

  66. Ko NWM, Kwan ASH. The initial region of subsonic coaxial jets. J Fluid Mech. 1976;73(2):305–32.

    Google Scholar 

  67. Ozmen Y. Confined impinging twin air jets at high Reynolds numbers. Exp Therm Fluid Sci. 2011;35(2):355–63.

    Google Scholar 

  68. Baydar E. Confined impinging air jet at low Reynolds numbers. Exp Therm Fluid Sci. 1999;19(1):27–33.

    Google Scholar 

  69. Abdel-Fattah A. Numerical and experimental study of turbulent impinging twin-jet flow. Exp Therm Fluid Sci. 2007;31(8):1061–72.

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this study by the research fund of the Gazi University Scientific Research Projects Coordination Unit (BAP) under Grant No. FDK-2022-7402 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Demir.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, F., Turgut, O. & Calisir, T. Investigation of swirling impinging jet at low nozzle to plate distances. J Therm Anal Calorim 148, 11999–12016 (2023). https://doi.org/10.1007/s10973-023-12484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12484-8

Keywords

Navigation