Skip to main content
Log in

Viscoelastic dielectric liquid flow over a horizontal stretching sheet

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Flow of viscoelastic dielectric liquid due to horizontal stretching sheet is studied. The problem is investigated with all mathematical backgrounds and is solved numerically using Runge–Kutta-based shooting strategy to illuminate the system incorporating nonlinear ordinary differential equations describing the system's equations. The impact of physical parameters Prandtl number, dielectric interaction parameter, and viscoelastic parameter on velocity and temperature is discussed and illustrated through graphs. For different values of non-dimensional parameters, local Nusselt number and skin friction are tabulated. The current findings using previously published works in a restricted number of cases are validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a :

Distance

c p :

Specific heat constant

\(k\) :

Thermal conductivity

\(\left(u,v\right)\) :

Velocity components

\(\left(x,y\right)\) :

Cartesian component

\(\mathrm{Pr }= \frac{\mu {c}_{\text{p}}}{k}\) :

Prandtl number

\(\lambda =\frac{c\mu }{\rho k({T}_{\text{c}}-{T}_{\text{w}})}\) :

Viscous dissipation

\(\beta =\frac{{\alpha }{\prime}\rho }{2\pi {\mu }^{2}}{\epsilon }_{0}e({T}_{\text{c}}-T)\) :

Dielectric interaction parameter

\(\mu\) :

Viscosity

\(T\) :

Fluid temperature

\(E\) :

Electric field

\(P\) :

Dielectric polarization

\({\varepsilon }_{0}\) :

Electric permiability of free space

\({T}_{\mathrm{c}}\) :

Curie temperature

\(\rho\) :

Fluid density

\(\varnothing\) :

Electric potential

\(\Psi\) :

Stream function

\({\lambda }_{1}\) :

Relaxation time

\({\gamma }_{1}\) :

Viscoelastic parameter

\(\alpha\) :

Dimensionless distance

\({g}^{*}\) :

The coefficient of thermal expansion

\(g\) :

Acceleration due to gravity

References

  1. Fisher EG. Extrusion of plastics. 3rd ed. London: Newnes-Buttterworld; 1976.

    Google Scholar 

  2. Sakiadis BC. “Boundary-layer behaviour on continuous solid surfaces I: the boundary layer on a equations for two dimensional and axisymmetric flow. AIChE J. 1961;7(1):26–8. https://doi.org/10.1002/aic.690070108.

    Article  CAS  Google Scholar 

  3. Sakiadis BC. Boundary-layer behavior on continuous solid surfaces II: the boundary layer on a continuous flat surface. AIChE J. 1961;7(1):221–5. https://doi.org/10.1002/aic.690070108.

    Article  CAS  Google Scholar 

  4. Sakiadis BC. Boundary-layer behavior on continuous solid surfaces III: the boundary layer on a continuous cylindrical surface. AIChE J. 1961;7(1):467–72. https://doi.org/10.1002/aic.690070325.

    Article  CAS  Google Scholar 

  5. Tsou FK, Sparrow EM, Goldstein RJ. Flow and heat transfer in the boundary layer on a continuous moving surfaces. Int J Heat Mass Transf. 1967;10(2):219–35. https://doi.org/10.1016/0017-9310(67)90100-7.

    Article  CAS  Google Scholar 

  6. Crane LJ. Flow past a stretching plate. J Appl Math Phys (ZAMP). 1970;21:645–7. https://doi.org/10.1007/BF01587695.

    Article  Google Scholar 

  7. Rajagopal KR, Na TY, Gupta AS. Flow of a viscoelastic fluid over a stretching sheet. Rheol Acta. 1984;23:213. https://doi.org/10.1007/BF01332078.

    Article  Google Scholar 

  8. Grubka LJ, Bobba KM. Heat transfer characteristics of a continuous, stretching surface with variable temperature. Int J Heat Mass Transf. 1985;107(1):248–50. https://doi.org/10.1007/BF01539754.

    Article  Google Scholar 

  9. Siddappa B, Subhash AM. Non-Newtonian flow past a stretching plate. Z Angew Math Phys. 1985;36:890. https://doi.org/10.1007/BF00944900.

    Article  CAS  Google Scholar 

  10. Dandapat BS, Gupta AS. Flow and heat transfer in a viscoelastic fluid over a stretching sheet. Int J Non-Linear Mech. 1989;24(3):215. https://doi.org/10.1016/0020-7462(89)90040-1.

    Article  Google Scholar 

  11. Chen CH. Laminar mixed convection adjacent to vertical, continuously stretching sheets. Heat Mass Transf. 1998;33:471–6. https://doi.org/10.1007/s002310050217.

    Article  CAS  Google Scholar 

  12. Andersson HI (2002) Slip flow past a stretching surface. Acta Mechanica. 158 (1–2):121–125. https://doi.org/10.1007/BF01463174

  13. Rollins D, Vajravelu K. Heat transfer in a second order fluid over a continuous stretching surface. Acta Mech. 1991;89:167. https://doi.org/10.1007/BF01171253.

    Article  Google Scholar 

  14. Kelly D, Vajravelu K, Andrews L. Analysis of heat mass transfer of a viscoelastic, electrically conducting fluid past a continuous stretching sheet. Nonlinear Anal. 1999;36:767. https://doi.org/10.1016/S0362-546X(98)00128-X.

    Article  Google Scholar 

  15. Bhatnagar RK, Rajagopal KR, Gupta AS. Flow of on oldroyd B model due to a stretching sheet in the presence of a free stream velocity. Int J Non-Linear Mech. 1995;30:391. https://doi.org/10.1016/0020-7462(94)00027-8.

    Article  Google Scholar 

  16. Othman MIA. Electrohydrodynamic stability in a horizontal viscoelastic fluid layer in the presence of a vertical temperature gradient. Int J Eng Sci. 2001;39:1217–32. https://doi.org/10.1016/S0020-7225(00)00092-6.

    Article  Google Scholar 

  17. Siddheshwar PG, Abraham A. Rayleigh-benard convection in a dielectric liquid : imposed time-periodic boundary temperatures. Chamchuri J Math. 2009;1(2):105–21.

    Google Scholar 

  18. Siddheshwar PG, Abraham A (2007) Rayleigh-benard convection in a dielectric liquid: time-periodic body force, PAMM, Vol 7 Issue 1, p 2100083-2100084. Special issue: sixth international congress on industrial applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zurich 2007, Published Online 12 December 2008, WILEY-VCH Verlag. . https://doi.org/10.1002/pamm.200701081

  19. Siddheshwar PG, Revathi BR (2013) Effect of gravity modulation on weakly non-Linear stability of stationary convection in a dielectric liquid. World Acad Sci Eng Technol. https://doi.org/10.1007/s11012-020-01241-y

  20. Annamma Abraham, Rayleigh-Benard-Marangoni (2013) Instability in a micro-polar dielectric liquid using the Galerkin technique. Math Sci Int Res J. 2(2), pp 254–258, ISSN : 2278 – 8697. http://www.math.sc.chula.ac.th/cjm

  21. Titus Ls, Abraham Annamma (2019) Flow of ferrofluid over an inclined stretching sheet in the presence of a magnetic dipole. https://www.iaeng.org/publication/WCE2018/WCE2018_pp44-49.pdf

  22. Shagaiya Y, Abdul Z, Ismail Z, Salah F. Journal of King Saud University—science thermal radiation on unsteady electrical MHD flow of nanofluid over stretching sheet with chemical reaction. J King Saud Univ Sci. 2019;31(4):804–12. https://doi.org/10.1016/j.jksus.2017.10.002.

    Article  Google Scholar 

  23. Suraiah Palaiah S, Basha H, Reddy GJ, Sheremet MA. Magnetized dissipative soret effect on chemically reactive maxwell fluid over a stretching sheet with joule heating. Coatings. 2021;11:528. https://doi.org/10.3390/coatings11050528.

    Article  CAS  Google Scholar 

  24. Alhadhrami A, Prasanna BM, Rajendra KC, Sarada K, Alzahrani H. Heat and mass transfer analysis in chemically reacting flow of non-Newtonian liquid with local thermal non-equilibrium conditions: a comparative study. Energies. 2021;14:5019. https://doi.org/10.3390/en14165019.

    Article  CAS  Google Scholar 

  25. Kumar R, Jyothi A, Alhumade H, Punith Gowda RJ, Alam MM, Ahmad I, Gorji MR, Prasannakumara BC. Impact of magnetic dipole on thermophoretic particle deposition in the flow of Maxwell fluid over a stretching sheet. J Mol Liq. 2021. https://doi.org/10.1016/j.molliq.2021.116494.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Punith Gowda RJ, Naveen Kumar R, Prasannakumara BC, Nagaraja B, Gireesha BJ (2021) Exploring magnetic dipole contribution on ferromagnetic nanofluid flow over a stretching sheet: an application of Stefan blowing. J Mol Liq. Vol 335, p 116215, ISSN 0167–7322, https://www.sciencedirect.com/science/article/pii/S0167732221009429

  27. Jawad M, Anwar S, Arshad K, Ishtiaq A, Hussam A, Taza G, Elenezer B, Muhannad Z. Analytical study of MHD mixed convection flow for Maxwell nanofluid with analytical study of MHD mixed convection flow for Maxwell nanofluid with variable thermal conductivity and Soret and Dufour effects. AIP Adv. 2021. https://doi.org/10.1063/5.0029105.

    Article  Google Scholar 

  28. Prasannakumara BC. Partial differential equations in applied mathematics numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect. Part Differ Equ Appl Mathe. 2021;4:100064. https://doi.org/10.1016/j.padiff.2021.100064.

    Article  Google Scholar 

  29. Bommepalli S, Reddy V, Mysore J, Ashwathnarayana DP, Chandrashekhar DV. Ohmic and viscous dissipation effect on free and forced convective flow of casson fluid in a channel. Biointerface Res Appl Chem. 2021;12(1):132–48.

    Article  Google Scholar 

  30. Zeb H, Wahab HA, Khan U, Juhani ASA, Andualem M, Khan I. The velocity slip boundary condition effects on non-Newtonian ferrofluid over a stretching sheet. Math Probl Eng. 2022. https://doi.org/10.1155/2022/1243333.

    Article  Google Scholar 

  31. Punith Gowda RJ, Sarris I, Kumar R, Kumar R, B.C., Prasannakumara. A three-dimensional non-Newtonian magnetic fluid flow induced due to stretching of the flat surface with chemical reaction. J Heat Transf. 2022. https://doi.org/10.1115/1.4055373.

    Article  Google Scholar 

  32. Awucha Uka U, Amos E, Nwaigwe C. Chemical reaction and thermal radiation effects on magnetohydrodynamic nanofluid flow past an exponentially stretching sheet. Theor Math Appl. 2022. https://doi.org/10.47260/tma/1221.

    Article  Google Scholar 

  33. Shilpa BV, Chandrashekhar DV, Dinesh PA, Vinay CV, Raghavendra CG, Gireesha BJ. Soret and Dufour effect on convection flow of Casson fluid in a channel. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11707-8.

    Article  Google Scholar 

  34. Mottupalle GR, Ashwathnarayana DP, Shankarappa BM, Sanjeevamurthy AA. Effects of variable fluid properties on double diffusive mixed convection with chemical reaction over an accelerating surface. Biointerface Res Appl Chem. 2022;12(4):5161–73. https://doi.org/10.33263/BRIAC124.51615173.

    Article  CAS  Google Scholar 

  35. Munivenkatappa U, Aswathanarayana DP, Reddy AS, Ramakrishna SB. Effect of couple stress fluid in an irregular Couette flow channel: an analytical approach. Biointerface Res Appl Chem. 2022;12(4):4686–704.

    CAS  Google Scholar 

  36. Sakthivel K, Narasappa N, Pobbathy Ashwathnarayana D, Thavada SK. The effect of MHD mixed convection flow over a heated plate. Heat Transf. 2022;51(8):7955–71. https://doi.org/10.1002/htj.22675.

    Article  Google Scholar 

  37. Anantha Kumar K, Sandeep N, Samrat SP, Ashwinkumar GP (2022) Effect of electromagnetic induction on the heat transmission in engine oil-based hybrid nano and ferrofluids: a nanotechnology application. In: proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. https://doi.org/10.1177/09544089221139569

  38. Sandeep N, Sulochana C, Ashwinkumar G. Understanding the dynamics of chemically reactive Casson liquid flow above a convectively heated curved expanse. Proc Inst Mech Eng C J Mech Eng Sci. 2022;236(24):11420–30. https://doi.org/10.1177/09544062221115084.

    Article  Google Scholar 

  39. Samrat S, Gangadharaiah Y, Ashwinkumar G, Sandeep N. Effect of exponential heat source on parabolic flow of three different non-Newtonian fluids. Proc Inst Mech Eng Part E: J Process Mech Eng. 2022;236(5):2131–8. https://doi.org/10.1177/09544089221083468.

    Article  Google Scholar 

Download references

Acknowledgements

We thank S J C Institute of Technology, Chickballapur, as well as BMSIT and M, Bengaluru, and M S Ramaiah Institute of Technology, Bengaluru, for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Dinesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veena, N., Dinesh, P.A., Abraham, A. et al. Viscoelastic dielectric liquid flow over a horizontal stretching sheet. J Therm Anal Calorim 148, 11893–11902 (2023). https://doi.org/10.1007/s10973-023-12480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12480-y

Keywords

Navigation