Skip to main content
Log in

Theoretical investigation on humidification–dehumidification desalination employing flat-plate solar water collector

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A solar-powered humidification–dehumidification desalination (HDD) system is a promising technique for small-scale freshwater production. This paper presents the theoretical investigation of a flat-plate solar water collector (FPSWC)-integrated HDD system located in Kozhikode, India. A zero-dimensional thermo-optical sub-model is employed to simulate the performance of FPSWC after due validation with outdoor experimental data and literature results. This sub-model is subsequently coupled with the main HDD model, which estimates heat and mass transfer, thereby simulating the performance of the FPSWC-HDD system. The influence of various parameters such as feed water-to-air mass flow rate ratio (MR), component effectiveness, collector feed water inlet temperature, and inlet air relative humidity on performance parameters including freshwater yield, gain output ratio (GOR), and recovery ratio (RR) is investigated. Results showed that freshwater yield is optimum at MR of 2, and the maximum freshwater yield can reach about 6.822 kg day−1 in March at MR of 2. The effectiveness of the dehumidifier has a more significant effect on freshwater yield, GOR, and RR than that of the humidifier. Collector feed water inlet temperature and inlet air relative humidity also influence the system performance. The estimated cost of freshwater production is about 0.075 $ L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\({A}_{\mathrm{c}}\) :

Collector area (m2)

\({B}_{\mathrm{t}}\) :

Thickness of back insulation (m)

1/\({C}_{\mathrm{b}}\) :

Adhesive resistance (m2 K W−1)

\({c}_{\mathrm{p}}\) :

Specific heat of water (J kg−1 K−1)

D :

Absorber tube outside diameter (m)

\({D}_{\mathrm{i}}\) :

Absorber tube inside diameter (m)

\({E}_{\mathrm{t}}\) :

Edge thickness (m)

F :

Standard fin efficiency factor

\({F}_{\mathrm{R}}\) :

Collector heat removal factor

\({F}^{\mathrm{^{\prime}}}\) :

Collector efficiency factor

\(G\) :

Global solar radiation flux on a horizontal surface (W m−2)

\({G}_{\mathrm{b}}\) :

Direct solar radiation flux (W m−2)

\({G}_{\mathrm{d}}\) :

Diffused solar radiation flux (W m−2)

\({G}_{\mathrm{T}}\) :

Global solar radiation on a tilted surface (W m−2)

h :

Specific enthalpy (kJ kg−1)

\(\Delta \dot{\mathrm{H}}\) :

Change in the enthalpy rate (kW)

\({h}_{\mathrm{fg}}\) :

Latent heat of evaporation (kJ kg−1)

\({h}_{\mathrm{w}}\) :

Wind heat transfer coefficient (W m−2 K−1)

\({h}_{\mathrm{wt}}\) :

Convective heat transfer coefficient of water (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

\({K}_{\mathrm{\tau \alpha }}\) :

Incident angle modifier

\(\dot{m}\) :

Mass flow rate (kg s−1)

n :

Number of years

N :

Number of glass cover

Nu:

Nusselt number

P :

Perimeter (m)

Pr:

Prandtl number

\({P}_{\mathrm{atm}}\) :

Atmospheric pressure (kPa)

\({P}_{\mathrm{sat}}\) :

Saturation pressure of water vapor (kPa)

\({\dot{Q}}_{\mathrm{U}}\) :

Useful energy gain (W)

R :

Transposition factor

r :

Rate of interest

Re:

Reynolds number

Rh:

Relative humidity

T :

Temperature (\(\mathrm{^\circ{\rm C} }\))

\({T}_{\mathrm{m}}\) :

Mean temperature of feed water (\(\mathrm{^\circ{\rm C} }\))

\({T}_{\mathrm{pm}}\) :

Absorber plate mean temperature (\(\mathrm{^\circ{\rm C} }\))

\({T}_{\mathrm{r}}\) :

Reduced temperature difference (m2 K W−1)

U :

Loss coefficient (W m−2 K−1)

U L :

Overall heat loss coefficient (W m−2 K−1)

\({V}_{\mathrm{w}}\) :

Wind speed (m s−1)

W :

Tube spacing (m)

\({\in }_{\mathrm{g}}\) :

Emissivity of glass

\({\in }_{\mathrm{p}}\) :

Emissivity of absorber plate

\({\delta }_{\mathrm{ab}}\) :

Absorber plate thickness (m)

\(\rho\) :

Foreground albedo

\(\theta\) :

Incident angle of solar rays (\(^\circ\))

\(\delta\) :

Declination angle (\(^\circ\))

\(\sigma\)::

Stefan–Boltzmann constant (W m2 K4)

\(\tau \alpha\)::

Transmittance absorptance product

Φ:

Latitude (\(^\circ\))

\(\gamma\) :

Surface azimuth angle (\(^\circ\))

\({\omega }_{\mathrm{h}}\) :

Hour angle (\(^\circ\))

\({\theta }_{\mathrm{z}}\) :

Solar zenith angle (\(^\circ\))

\(\varepsilon_{\mathrm{H}}\) :

Effectiveness of humidifier

\(\varepsilon_{\mathrm{D}}\) :

Effectiveness of dehumidifier

\(\eta\) :

Energy efficiency

\(\beta\) :

Collector tilt angle (\(^\circ\))

\(\omega\) :

Humidity ratio (\({\mathrm{kg}}_{\mathrm{v}} {{\mathrm{kg}}_{\mathrm{a}}}^{-1}\))

a:

Air

ab:

Absorber plate

amb:

Ambient

b:

Bottom

br:

Brine

cw:

Cooling water

d:

Diffuse

e:

Edge

fw:

Freshwater

ins:

Insulation

r:

Reflection

t:

Top

w:

Feed water

1,2,3,….:

State points

AC:

Annual cost

AOC:

Annual operating cost

ASV:

Annual salvage value

AATC:

Actual annual total cost

AFWP:

Annual freshwater production

CRF:

Capital recovery factor

FWC:

Freshwater cost

FPC:

Flat-plate collector

FPSWC:

Flat-plate solar water collector

GOR:

Gain output ratio

HDD:

Humidification–dehumidification desalination

IC:

Investment cost

MC:

Maintenance cost

MR:

Mass flow rate ratio

RR:

Recovery ratio

SV:

Salvage value

WHO:

World Health Organization

References

  1. UNICEF (United Nations International Children's Emergency Fund), Reimagining

  2. Shaikh JS, Ismail S. A review on recent technological advancements in humidification dehumidification (HDH) desalination. J Environ Chem Eng. 2022;10:108890. https://doi.org/10.1016/j.jece.2022.108890.

    Article  CAS  Google Scholar 

  3. Narayan GP, Sharqawy MH, Summers EK, Lienhard JH, Zubair SM, Antar MA. The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production. Renew Sustain Energy Rev. 2010;14:1187–201. https://doi.org/10.1016/j.rser.2009.11.014.

    Article  CAS  Google Scholar 

  4. Summers EK, Antar MA, Lienhard JH. Design and optimization of an air heating solar collector with integrated phase change material energy storage for use in humidification-dehumidification desalination. Sol Energy. 2012;86:3417–29. https://doi.org/10.1016/j.solener.2012.07.017.

    Article  CAS  Google Scholar 

  5. Rajaseenivasan T, Shanmugam RK, Hareesh VM, Srithar K. Combined probation of bubble column humidification dehumidification desalination system using solar collectors. Energy. 2016;116:459–69. https://doi.org/10.1016/j.energy.2016.09.127.

    Article  Google Scholar 

  6. Zubair MI, Al-Sulaiman FA, Antar MA, Al-Dini SA, Ibrahim NI. Performance and cost assessment of solar driven humidification dehumidification desalination system. Energy Convers Manag. 2017;132:28–39. https://doi.org/10.1016/j.enconman.2016.10.005.

    Article  Google Scholar 

  7. Wu G, Zheng H, Ma X, Kutlu C, Su Y. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator. Energy Convers Manag. 2017;143:241–51. https://doi.org/10.1016/j.enconman.2017.04.011.

    Article  Google Scholar 

  8. Yildirim C, Solmus I. A parametric study on a humidification-dehumidification (HDH) desalination unit powered by solar air and water heaters. Energy Convers Manag. 2014;86:568–75. https://doi.org/10.1016/j.enconman.2014.06.016.

    Article  Google Scholar 

  9. Giwa A, Fath H, Hasan SW. Humidification-dehumidification desalination process driven by photovoltaic thermal energy recovery (PV-HDH) for small-scale sustainable water and power production. Desalination. 2016;377:163–71. https://doi.org/10.1016/j.desal.2015.09.018.

    Article  CAS  Google Scholar 

  10. Li X, Yuan G, Wang Z, Li H, Xu Z. Experimental study on a humidification and dehumidification desalination system of solar air heater with evacuated tubes. Desalination. 2014;351:1–8. https://doi.org/10.1016/j.desal.2014.07.008.

    Article  CAS  Google Scholar 

  11. Antar MA, Sharqawy MH. Experimental investigations on the performance of an air heated humidification-dehumidification desalination system. Desalin Water Treat. 2013;51:837–43. https://doi.org/10.1080/19443994.2012.714598.

    Article  CAS  Google Scholar 

  12. Hermosillo JJ, Arancibia-Bulnes CA, Estrada CA. Water desalination by air humidification: mathematical model and experimental study. Sol Energy. 2012;86:1070–6. https://doi.org/10.1016/j.solener.2011.09.016.

    Article  CAS  Google Scholar 

  13. Abdullah AS, Essa FA, Omara ZM, Bek MA. Performance evaluation of a humidification-dehumidification unit integrated with wick solar stills under different operating conditions. Desalination. 2018;441:52–61. https://doi.org/10.1016/j.desal.2018.04.024.

    Article  CAS  Google Scholar 

  14. Hamed MH, Kabeel AE, Omara ZM, Sharshir SW. Mathematical and experimental investigation of a solar humidification-dehumidification desalination unit. Desalination. 2015;358:9–17. https://doi.org/10.1016/j.desal.2014.12.005.

    Article  CAS  Google Scholar 

  15. Al-Sulaiman FA, Zubair MI, Atif M, Gandhidasan P, Al-Dini SA, Antar MA. Humidification dehumidification desalination system using parabolic trough solar air collector. Appl Therm Eng. 2015;75:809–16. https://doi.org/10.1016/j.applthermaleng.2014.10.072.

    Article  Google Scholar 

  16. Prakash NG, St. John MG, Zubair SM, Lienhard JH. Thermal design of the humidification dehumidification desalination system: an experimental investigation. Int J Heat Mass Transf. 2013;58:740–8. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.035.

    Article  CAS  Google Scholar 

  17. Nematollahi F, Rahimi A, Gheinani TT. Experimental and theoretical energy and exergy analysis for a solar desalination system. Desalination. 2013;317:23–31. https://doi.org/10.1016/j.desal.2013.02.021.

    Article  CAS  Google Scholar 

  18. Yamali C, Solmuş I. Theoretical investigation of a humidification-dehumidification desalination system configured by a double-pass flat plate solar air heater. Desalination. 2007;205:163–77. https://doi.org/10.1016/j.desal.2006.02.053.

    Article  CAS  Google Scholar 

  19. Sharqawy MH, Liu H. The effect of pressure on the performance of bubble column dehumidifier. Int J Heat Mass Transf. 2015;87:212–21. https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.088.

    Article  Google Scholar 

  20. Khalil A, El-Agouz SA, El-Samadony YAF, Abdo A. Solar water desalination using an air bubble column humidifier. Desalination. 2015;372:7–16. https://doi.org/10.1016/j.desal.2015.06.010.

    Article  CAS  Google Scholar 

  21. Santosh R, Kumaresan G, Kumar GK, Velraj R. Experimental parametric investigation of waste heat powered humidification dehumidification system for production of freshwater from wastewater. Desalination. 2020;484:114422. https://doi.org/10.1016/j.desal.2020.114422.

    Article  CAS  Google Scholar 

  22. Ghazal MT, Atikol U, Egelioglu F. An experimental study of a solar humidifier for HDD systems. Energy Convers Manag. 2014;82:250–8. https://doi.org/10.1016/j.enconman.2014.03.019.

    Article  Google Scholar 

  23. Farsad S, Behzadmehr A. Analysis of a solar desalination unit with humidification-dehumidification cycle using DoE method. Desalination. 2011;278:70–6. https://doi.org/10.1016/j.desal.2011.05.008.

    Article  CAS  Google Scholar 

  24. Nafey AS, Fath HES, El-Helaby SO, Soliman AM. Solar desalination using humidification dehumidification processes. Part I. A numerical investigation. Energy Convers Manag. 2004;45:1243–61. https://doi.org/10.1016/S0196-8904(03)00151-1.

    Article  CAS  Google Scholar 

  25. Abd ElKader M, Aref A, Moustafa GH, ElHenawy Y. A Theoretical and experimental study for a humidification - dehumidification (HD) solar desalination unit. ERJ Eng Res J. 2010;33:119–30.

    Article  Google Scholar 

  26. Zubair SM, Antar MA, Elmutasim SM, Lawal DU. Performance evaluation of humidification-dehumidification (HDH) desalination systems with and without heat recovery options: an experimental and theoretical investigation. Desalination. 2018;436:161–75. https://doi.org/10.1016/j.desal.2018.02.018.

    Article  CAS  Google Scholar 

  27. Lawal D, Antar M, Khalifa A, Zubair S, Al-Sulaiman F. Humidification-dehumidification desalination system operated by a heat pump. Energy Convers Manag. 2018;161:128–40. https://doi.org/10.1016/j.enconman.2018.01.067.

    Article  Google Scholar 

  28. Siddiqui OK, Sharqawy MH, Antar MA, Zubair SM. Performance evaluation of variable pressure humidification-dehumidification systems. Desalination. 2017;409:171–82. https://doi.org/10.1016/j.desal.2017.01.025.

    Article  CAS  Google Scholar 

  29. Garg K, Das SK, Tyagi H. Thermal design of a humidification-dehumidification desalination cycle consisting of packed-bed humidifier and finned-tube dehumidifier. Int J Heat Mass Transf. 2022;183:122153. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122153.

    Article  Google Scholar 

  30. Gueymard CA. Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications. Sol Energy. 2009;83:432–44. https://doi.org/10.1016/j.solener.2008.11.004.

    Article  CAS  Google Scholar 

  31. Duffie JA, Beckman WA. Solar engineering of thermal processes. New York: John Wiley & Sons; 1985.

    Google Scholar 

  32. Okonkwo EC, Wole-osho I, Kavaz D, Abid M, Al-ansari T. Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids. Sustain Energy Technol Assessments. 2020;37:100636. https://doi.org/10.1016/j.seta.2020.100636.

    Article  Google Scholar 

  33. Verma SK, Tiwari AK, Chauhan DS. Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers Manag. 2017;134:103–15. https://doi.org/10.1016/j.enconman.2016.12.037.

    Article  CAS  Google Scholar 

  34. Rani P, Tripathy PP. Thermal characteristics of a flat plate solar collector: Influence of air mass flow rate and correlation analysis among process parameters. Sol Energy. 2020;211:464–77. https://doi.org/10.1016/j.solener.2020.08.057.

    Article  Google Scholar 

  35. EU Science Hub. PHOTOVOLTAIC GEOGRAPHICAL INFORMATION SYSTEM. https://re.jrc.ec.europa.eu/pvg_tools/en/tools.htmla (accessed 13 March 2022).

  36. Kabeel AE, El-Said EMS. A hybrid solar desalination system of air humidification-dehumidification and water flashing evaporation. Part I. A numerical investigation. Desalination. 2013;320:56–72. https://doi.org/10.1016/j.desal.2013.04.016.

    Article  CAS  Google Scholar 

  37. Kabeel AE, El-Said EMS. Experimental study on a modified solar power driven hybrid desalination system. Desalination. 2018;443:1–10. https://doi.org/10.1016/j.desal.2018.05.017.

    Article  CAS  Google Scholar 

  38. McGovern RK, Thiel GP, Prakash NG, Zubair SM, Lienhard VJH. Performance limits of zero and single extraction humidification-dehumidification desalination systems. Appl Energy. 2013;102:1081–90. https://doi.org/10.1016/j.apenergy.2012.06.025.

    Article  Google Scholar 

  39. Lampe C. Report of Performance Test similar to EN 12975-2 for a Glazed Solar Collector. http://www.biomesolar.com/medias/certification/performance%20test_K420-EM_english%20(2).pdf.

  40. Mohamed ASA, Ahmed MS, Shahdy AG. Theoretical and experimental study of a seawater desalination system based on humidification-dehumidification technique. Renew Energy. 2020;152:823–34. https://doi.org/10.1016/j.renene.2020.01.116.

    Article  CAS  Google Scholar 

  41. Mohamed AMI, El-minshawy NA. Theoretical investigation of solar humidification—dehumidification desalination system using parabolic trough concentrators. Energy Convers Manag. 2011;52:3112–9. https://doi.org/10.1016/j.enconman.2011.04.026.

    Article  Google Scholar 

  42. Narayan GP, Sharqawy MH, Lienhard VJH, Zubair SM. Thermodynamic analysis of humidification dehumidification desalination cycles. Desalin Water Treat. 2010;16:339–53. https://doi.org/10.5004/dwt.2010.1078.

    Article  CAS  Google Scholar 

  43. Sharqawy MH, Antar MA, Zubair SM, Elbashir AM. Optimum thermal design of humidification dehumidification desalination systems. Desalination. 2014;349:10–21. https://doi.org/10.1016/j.desal.2014.06.016.

    Article  CAS  Google Scholar 

  44. Xu H, Zhao Y, Dai YJ. Experimental study on a solar assisted heat pump desalination unit with internal heat recovery based on humidification-dehumidification process. Desalination. 2019;452:247–57. https://doi.org/10.1016/j.desal.2018.11.019.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Faculty Research Grant of National Institute of Technology Calicut (MED/FRG/SI/2020-21/01), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in all aspects of this paper.

Corresponding author

Correspondence to Saleel Ismail.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, J.S., Ismail, S. Theoretical investigation on humidification–dehumidification desalination employing flat-plate solar water collector. J Therm Anal Calorim 148, 11835–11853 (2023). https://doi.org/10.1007/s10973-023-12478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12478-6

Keywords

Navigation