Skip to main content
Log in

Numerical study of heat transfer, exergy efficiency, and friction factor with nanofluids in a plate heat exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the performance of a plate heat exchanger is investigated numerically using tungsten carbide (WC) nanoparticles with water. By employing novel nanoparticle materials (WC) instead of traditional fluids in a plate heat exchanger, it is required to enhance heat transfer. The effect of the mass concentration of nanofluid on the hot side on various parameters such as Nusselt number, friction factor, exergy efficiency temperature, velocity, and pressure distribution is analyzed with Reynolds number range from 3240 to 8840. The obtained results are validated with the previous experimental findings. The results show that increasing the Reynolds number and nanofluid mass concentration can enhance the Nusselt number. WC-water nanofluid with 0.4 mass% achieved the maximum Nusselt number ratio with the range of 166–191%. The friction factor decreased by increasing the Reynolds number where the lowest friction factor with values ranging from 0.17 to 0.33 is achieved by 0.4 mass% nanofluids concentration. The maximum exergy efficiency ranging from 49.5 to 64.5 is achieved by WC-water nanofluid with 0.4 mass%. The streamlines and contours of the temperature, velocity, and pressure distribution provide credible interpretations for the movements of WC-water nanofluids and a noticed improvement in heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

A :

Surface area, m2

m :

Mass flow rate, kg s−1

D h :

Hydraulic diameter, m

T :

Temperature, °C

G :

Gravity acceleration, m s−2

Cp:

Specific heat, J kg−1 K−1

l :

Plate length, m

Q :

Heat transfer rate, W

Gk:

Eddy viscosity

P :

Pressure, Pa

U :

Overall heat transfer coefficient, J kg−1 K−1 J kg−1 W m−2 K−1

V :

Velocity, m s−1

T surr :

Surrounding temperature

W :

Plate width, m

Β :

Corrugation angle

t :

Corrugation pitch, m

Nu:

Nusselt number

N :

Corrugated plate number

Pr:

Prandtl number

H :

Heat transfer coefficient, J kg−1

T o :

Ambient temperature

Re:

Reynolds number

S :

Entropy, J kg−1 K−1

f :

Friction factor

K :

Thermal conductivity, W m−1 K−1

Re:

Reynolds number

h :

Heat transfer coefficient, J kg−1 K−1

NF:

Nanofluids

Out:

Out

In:

In

Ave:

Average

C:

Cold water

ΔP :

Pressure drop, Pa

µ :

Viscosity, N s m−2

ϕ :

Volume concentration

\(\rho \) :

Density, kg m−3

PHE:

Plate heat exchanger

CFD:

Computational fluid dynamics

WC:

Tungsten carbide

MWCNT:

Multiwalled carbon nanotube

LMTD:

Logarithmic mean temperature difference

References

  1. Xu HJ, Xing ZB, Wang FQ, Cheng ZM. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem Eng Sci. 2019;195:462–83. https://doi.org/10.1016/j.ces.2018.09.045.

    Article  CAS  Google Scholar 

  2. Das SK, Roetzel W. Second law analysis of a plate heat exchanger with an axial dispersive wave. Cryogenics. 1998;38(8):791–8.

    Article  CAS  Google Scholar 

  3. Saman WY, Alizadeh SJSE. Modelling and performance analysis of a cross-flow type plate heat exchanger for dehumidification/cooling. Sol Energy. 2001;70(4):361–72.

    Article  CAS  Google Scholar 

  4. Ayub ZH. Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat Transf Eng. 2003;24(5):3–16.

    Article  CAS  Google Scholar 

  5. Galeazzo FCC, Miura RY, Gut JAW, Tadini CC. Experimental and numerical heat transfer in a plate heat exchanger. Chem Eng Sci. 2006;61(21):7133–8. https://doi.org/10.1016/j.ces.2006.07.029.

    Article  CAS  Google Scholar 

  6. Kanaris AG, Mouza AA, Paras SV. Optimal design of a plate heat exchanger with undulated surfaces. Int J Therm Sci. 2009;48(6):1184–95. https://doi.org/10.1016/j.ijthermalsci.2008.11.001.

    Article  Google Scholar 

  7. Pantzali MN, Mouza AA, Paras SV. Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chem Eng Sci. 2009;64(14):3290–300. https://doi.org/10.1016/j.ces.2009.04.004.

    Article  CAS  Google Scholar 

  8. Ahmed MA, Shuaib NH, Yusoff MZ, Al-Falahi AH. Numerical investigations of flow and heat transfer enhancement in a corrugated channel using nanofluid. Int Commun Heat Mass Transf. 2011;38(10):1368–75. https://doi.org/10.1016/j.icheatmasstransfer.2011.08.013.

    Article  CAS  Google Scholar 

  9. Kumar V, Tiwari AK, Ghosh SK. Application of nanofluids in plate heat exchanger: a review. Energy Convers Manag. 2015;105:1017–36. https://doi.org/10.1016/j.enconman.2015.08.053.

    Article  CAS  Google Scholar 

  10. Amani M, Amani P, Kasaeian A, Mahian O, Yan W-M. Two-phase mixture model for nanofluid turbulent flow and heat transfer: effect of heterogeneous distribution of nanoparticles. Chem Eng Sci. 2017;167:135–44. https://doi.org/10.1016/j.ces.2017.03.065.

    Article  CAS  Google Scholar 

  11. Sekrani G, Poncet S, Proulx P. Modeling of convective turbulent heat transfer of water-based Al2O3 nanofluids in an uniformly heated pipe. Chem Eng Sci. 2018;176:205–19. https://doi.org/10.1016/j.ces.2017.10.044.

    Article  CAS  Google Scholar 

  12. Bhattad A, Sarkar J, Ghosh P. Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger. Int Commun Heat Mass Transf. 2018;91:262–73. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.020.

    Article  CAS  Google Scholar 

  13. Shirzad M, Ajarostaghi SSM, Delavar MA, Sedighi K. Improve the thermal performance of the pillow plate heat exchanger by using nanofluid: numerical simulation. Adv Powder Technol. 2019;30(7):1356–65. https://doi.org/10.1016/j.apt.2019.04.011.

    Article  CAS  Google Scholar 

  14. Nakhchi ME, Esfahani JA. Numerical investigation of turbulent Cu-water nanofluid in heat exchanger tube equipped with perforated conical rings. Adv Powder Technol. 2019;30(7):1338–47. https://doi.org/10.1016/j.apt.2019.04.009.

    Article  CAS  Google Scholar 

  15. Abbas A, Lee H, Sengupta A, Wang C-C. Numerical investigation of thermal and hydraulic performance of shell and plate heat exchanger. Appl Therm Eng. 2020;167:114705. https://doi.org/10.1016/j.applthermaleng.2019.114705.

    Article  Google Scholar 

  16. Bhattad A, Sarkar J, Ghosh P. Hydrothermal performance of different alumina hybrid nanofluid types in plate heat exchanger. J Therm Anal Calorim. 2020;139(6):3777–87. https://doi.org/10.1007/s10973-019-08682-y.

    Article  CAS  Google Scholar 

  17. Pandya NS, Shah H, Molana M, Tiwari AK. Heat transfer enhancement with nanofluids in plate heat exchangers: a comprehensive review. Eur J Mech B/Fluids. 2020;81:173–90. https://doi.org/10.1016/j.euromechflu.2020.02.004.

    Article  Google Scholar 

  18. Bahiraei M, Monavari A. Thermohydraulic performance and effectiveness of a mini shell and tube heat exchanger working with a nanofluid regarding effects of fins and nanoparticle shape. Adv Powder Technol. 2021;32(12):4468–80. https://doi.org/10.1016/j.apt.2021.09.042.

    Article  CAS  Google Scholar 

  19. Al Zahrani S, Islam MS, Saha SC. Heat transfer enhancement investigation in a novel flat plate heat exchanger. Int J Therm Sci. 2021;161:106763. https://doi.org/10.1016/j.ijthermalsci.2020.106763.

    Article  Google Scholar 

  20. Vahedi M, Mollaei Barzi Y, Firouzi M. Two-phase simulation of nanofluid flow in a heat exchanger with grooved wall. J Therm Anal Calorim. 2021;146(3):1297–321. https://doi.org/10.1007/s10973-020-10066-6.

    Article  CAS  Google Scholar 

  21. Khodabandeh E, Boushehri R, Akbari OA, Akbari S, Toghraie D. Numerical investigation of heat and mass transfer of water—silver nanofluid in a spiral heat exchanger using a two-phase mixture method. J Therm Anal Calorim. 2021;144(3):1003–12. https://doi.org/10.1007/s10973-020-09533-x.

    Article  CAS  Google Scholar 

  22. Singh S, Verma P, Ghosh SK. Numerical and experimental analysis of performance in a compact plate heat exchanger using graphene oxide/water nanofluid. Int J Numer Methods Heat Fluid Flow. 2021;31(11):3356–72. https://doi.org/10.1108/hff-08-2020-0539.

    Article  Google Scholar 

  23. Çuhadaroğlu B, Hacisalihoğlu MS. An experimental study on the performance of water-based CuO nanofluids in a plate heat exchanger. Int Commun Heat Mass Transf. 2022;137:106255. https://doi.org/10.1016/j.icheatmasstransfer.2022.106255.

    Article  CAS  Google Scholar 

  24. Shafiq BM, Allauddin U, Qaisrani MA, Rehman T-U, Ahmed N, Usman Mushtaq M, et al. Correction to: thermal performance enhancement of shell and helical coil heat exchanger using MWCNTs/water nanofluid. J Therm Anal Calorim. 2022;147(21):12127. https://doi.org/10.1007/s10973-022-11455-9.

    Article  CAS  Google Scholar 

  25. Göltaş M, Gürel B, Keçebaş A, Akkaya VR, Güler OV, Kurtuluş K, et al. Thermo-hydraulic performance improvement with nanofluids of a fish-gill-inspired plate heat exchanger. Energy. 2022;253:124207. https://doi.org/10.1016/j.energy.2022.124207.

    Article  CAS  Google Scholar 

  26. Tascheck BL, Donati DCX, Possamai TS, Oba R, Beckedorff L, Monteiro AS, et al. Numerical analysis of hydrodynamic and thermal characteristics of three inside channel configurations of a plate and shell heat exchanger (PSHE). Chem Eng Sci. 2022;264:118167. https://doi.org/10.1016/j.ces.2022.118167.

    Article  CAS  Google Scholar 

  27. Alklaibi AM, Sundar LS, Chandra Mouli KVV. Experimental investigation on the performance of hybrid Fe3O4 coated MWCNT/water nanofluid as a coolant of a plate heat exchanger. Int J Therm Sci. 2022;171:107249. https://doi.org/10.1016/j.ijthermalsci.2021.107249.

    Article  CAS  Google Scholar 

  28. Tuncer AD, Khanlari A, Sözen A, Gürbüz EY, Variyenli Hİ. Upgrading the performance of shell and helically coiled heat exchangers with new flow path by using TiO2/water and CuO–TiO2/water nanofluids. Int J Therm Sci. 2023;183:107831. https://doi.org/10.1016/j.ijthermalsci.2022.107831.

    Article  CAS  Google Scholar 

  29. Dharmakkan N, Srinivasan PM, Muthusamy S, Jomde A, Shamkuwar S, Sonawane C, et al. A case study on analyzing the performance of microplate heat exchanger using nanofluids at different flow rates and temperatures. Case Stud Therm Eng. 2023;44:102805. https://doi.org/10.1016/j.csite.2023.102805.

    Article  Google Scholar 

  30. Marouf ZM, Hassan MA, Fouad MA. Energy, exergy, and economic (3E) analysis of air bubbles injection into plate heat exchangers. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12143-y.

    Article  Google Scholar 

  31. Sadeghalvaad M, Reza Razavi S, Sabbaghi S, Rasouli K. Heating performance of a large-scale line heater by adding synthesized carbon- nanodots to the heater bath fluid: CFD simulation and experimental study. Adv Powder Technol. 2023;34(3):103960. https://doi.org/10.1016/j.apt.2023.103960.

    Article  CAS  Google Scholar 

  32. Tiwari AK, Said Z, Pandya NS, Shah H. Effect of plate spacing and inclination angle over the thermal performance of plate heat exchanger working with novel stabilized polar solvent-based silicon carbide nanofluid. J Energy Storage. 2023;60:106615. https://doi.org/10.1016/j.est.2023.106615.

    Article  Google Scholar 

  33. Ajeeb W, Murshed SMS. Nanofluids in compact heat exchangers for thermal applications: a state-of-the-art review. Therm Sci Eng Prog. 2022;30:101276. https://doi.org/10.1016/j.tsep.2022.101276.

    Article  CAS  Google Scholar 

  34. Gupta SK, Verma H, Yadav N. A review on recent development of nanofluid utilization in shell & tube heat exchanger for saving of energy. Mater Today Proc. 2022;54:579–89. https://doi.org/10.1016/j.matpr.2021.09.455.

    Article  CAS  Google Scholar 

  35. Kumar S, Singh SK, Sharma D. A comprehensive review on thermal performance enhancement of plate heat exchanger. Int J Thermophys. 2022;43(7):109. https://doi.org/10.1007/s10765-022-03036-7.

    Article  CAS  Google Scholar 

  36. Marzouk SA, Abou Al-Sood MM, El-Said EMS, Younes MM, El-Fakharany MK. A comprehensive review of methods of heat transfer enhancement in shell and tube heat exchangers. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12265-3.

    Article  Google Scholar 

  37. Anitha S, Thomas T, Parthiban V, Pichumani M. What dominates heat transfer performance of hybrid nanofluid in single pass shell and tube heat exchanger? Adv Powder Technol. 2019;30(12):3107–17. https://doi.org/10.1016/j.apt.2019.09.018.

    Article  CAS  Google Scholar 

  38. Marzouk SA, Abou Al-Sood MM, El-Fakharany MK, El-Said EMS. Thermo-hydraulic study in a shell and tube heat exchanger using rod inserts consisting of wire-nails with air injection: experimental study. Int J Therm Sci. 2021;161:106742. https://doi.org/10.1016/j.ijthermalsci.2020.106742.

    Article  Google Scholar 

  39. Marzouk SA, Abou Al-Sood MM, El-Said EMS, El-Fakharany MK, Younes MM. Study of heat transfer and pressure drop for novel configurations of helical tube heat exchanger: a numerical and experimental approach. J Therm Anal Calorim. 2023;148(13):6267–82. https://doi.org/10.1007/s10973-023-12067-7.

    Article  CAS  Google Scholar 

  40. Marzouk SA, Abou Al-Sood MM, El-Said EMS, Younes MM, El-Fakharany MK. Experimental and numerical investigation of a novel fractal tube configuration in helically tube heat exchanger. Int J Therm Sci. 2023;187:108175. https://doi.org/10.1016/j.ijthermalsci.2023.108175.

    Article  Google Scholar 

  41. Saleh B, Sundar LS. Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids. Int J Therm Sci. 2021;165:106935. https://doi.org/10.1016/j.ijthermalsci.2021.106935.

    Article  CAS  Google Scholar 

  42. Arani AAA, Moradi R. Shell and tube heat exchanger optimization using new baffle and tube configuration. Appl Therm Eng. 2019;157:113736. https://doi.org/10.1016/j.applthermaleng.2019.113736.

    Article  Google Scholar 

  43. Bahiraei M, Heshmatian S, Goodarzi M, Moayedi H. CFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: effect of different configurations. Adv Powder Technol. 2019;30(11):2503–16. https://doi.org/10.1016/j.apt.2019.07.029.

    Article  CAS  Google Scholar 

  44. Lei Y, Li Y, Jing S, Song C, Lyu Y, Wang F. Design and performance analysis of the novel shell-and-tube heat exchangers with louver baffles. Appl Therm Eng. 2017;125:870–9. https://doi.org/10.1016/j.applthermaleng.2017.07.081.

    Article  Google Scholar 

  45. Barzegarian R, Moraveji MK, Aloueyan A. Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2–water nanofluid. Exp Therm Fluid Sci. 2016;74:11–8. https://doi.org/10.1016/j.expthermflusci.2015.11.018.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSP2023R515), King Saud University, Riyadh, Saudi Arabia, for funding this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Marzouk or Fahad Awjah Almehmadi.

Ethics declarations

Conflict of interest

The authors affirm that they have no known financial or interpersonal conflicts that would have seemed to have an impact on the research presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzouk, S.A., Aljabr, A., Almehmadi, F.A. et al. Numerical study of heat transfer, exergy efficiency, and friction factor with nanofluids in a plate heat exchanger. J Therm Anal Calorim 148, 11269–11281 (2023). https://doi.org/10.1007/s10973-023-12441-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12441-5

Keywords

Navigation