Skip to main content
Log in

A comprehensive review of computational fluid dynamics simulation studies in phase change materials: applications, materials, and geometries

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal energy storage systems (TESS) have emerged as significant global concerns in the design and optimization of devices and processes aimed at maximizing energy utilization, minimizing energy loss, and reducing dependence on fossil fuel energy for both environmental and economic reasons. Phase change materials (PCMs) are widely recognized as promising candidates due to their high latent heat storage (LHS) capacity. This review thoroughly evaluates the computational fluid dynamics (CFD) studies conducted in various sections, encompassing materials, modeling, simulation, as well as the results, advantages, and disadvantages of these works. The study is organized into three distinct sections. The first section discusses the applications of PCMs in various areas, including lithium-ion batteries, solar applications, building applications, electronics, and heating and cooling systems. The second section provides a comprehensive summary of cylindrical, rectangular, spherical, arbitrary shapes, and packed-bed geometries employed in TESS. The third section investigates the different types of materials used as PCMs. Based on the findings of this study, it can be concluded that industrial applications of hybrid nanocomposites incorporating PCMs in different geometries pose challenges, particularly in three-dimensional (3D) settings, where instability becomes a significant concern. Hence, further research and investigation are necessary to address these challenges adequately. In conclusion, this study serves as a reference review for future research endeavors in the field of simulating various PCMs in different geometries and applications. It provides valuable insights into the current state of knowledge, highlights potential areas for improvement, and offers guidance for advancing simulation techniques related to PCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ASHRAE:

American Society of Heating, Refrigerating and Air-Conditioning Engineers

CFD:

Computational fluid dynamic

CPCM:

Composite phase change material

CPU:

Central processing unit

CVFD:

Control-volume finite difference

e-NTU:

Effectiveness-number of transfer units

EG:

Expended graphite

ESS:

Energy storage systems

FDM:

Finite difference method

FEM:

Finite element method

FVM:

Finite volume method

HTC:

Heat transfer coefficient

HTF:

Heat transfer fluid

HTR:

Heat transfer rate

HTTD:

Heat transfer temperature difference

HVAC:

Heating, ventilation, and air conditioning

LHS:

Latent heat storage

LTES:

Latent thermal energy storage

NEPCM:

Nano-enhanced PCM

NP:

Nano particle

PCMs:

Phase change materials

PW:

Paraffin wax

RNG:

Renormalization group

SE:

Solar energy

SEM:

Scanning electron microscopy

SHS:

Sensible heat storage

SST:

Shear stress transport

TCR:

Thermal contact resistance

TESS:

Thermal energy storage system

TMS:

Thermal management system

TS:

Thermal storage

TSS:

Thermal storage system

UDF:

User-defined function

2D:

Two-dimensional

3D:

Three-dimensional

A(β):

Porosity function

A mush :

Mushy zone constant

C P :

Specific heat

H :

Specific enthalpy

h :

Enthalpy

h sl :

Latent heat

\(\Delta H\) :

Sum of latent heat

k l :

Thermal conductivity of the liquid phase

k s :

Thermal conductivity of the solid phase

L :

Latent heat of freezing of the material

l :

Specific length

n :

Normal vector at the interface

T :

Temperature

T s :

Temperature of solid

T l :

Temperature of liquid

Ra:

Rayleigh number

S :

Momentum source term

T :

Temperature

\(\overline{v }\) :

Fluid normal velocity

ρ :

Density

β :

Volumetric expansion coefficient

References

  1. Azimi B, Tahmasebpoor M, Sanchez-Jimenez PE, Perejon A, Valverde JM. Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents. Chem Eng J. 2019;358:679–90.

    CAS  Google Scholar 

  2. Tahmasebpoor M, Iranvandi M, Heidari M, Azimi B, Pevida C. Development of novel waste tea-derived activated carbon promoted with SiO2 nanoparticles as highly robust and easily fluidizable sorbent for low-temperature CO2 capture. J Environ Chem Eng. 2023;11(5):110437.

    CAS  Google Scholar 

  3. Iranvandi M, Tahmasebpoor M, Azimi B, Heidari M, Pevida C. The novel SiO2-decorated highly robust waste-derived activated carbon with homogeneous fluidity for the CO2 capture process. Sep Purif Technol. 2023;306: 122625.

    CAS  Google Scholar 

  4. Ray AK, Rakshit D, Kumar KR, Gurgenci H. Strength-Weakness-Opportunities-Threats-Unusual (SWOT-U) behavior analysis of silicon as phase change material for high-temperature latent heat storage. Thermal Sci Eng Progr. 2023;38: 101627.

    CAS  Google Scholar 

  5. Koller M, Walter H, Hameter M. Transient numerical simulation of the melting behavior of NaNO3 in a latent thermal energy storage device using a wire matrix for enhancing the heat transfer. Energies. 2016;9:9–17.

    Google Scholar 

  6. Dabiri S, Mehrpooya M, Nezhad EG. Latent and sensible heat analysis of PCM incorporated in a brick for cold and hot climatic conditions, utilizing computational fluid dynamics. Energy. 2018;159:160–71.

    Google Scholar 

  7. Greco A, Jiang X. A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite. J Power Sources. 2016;315:127–39.

    CAS  Google Scholar 

  8. Moghadam AV, Goshayeshi HR, Chaer I, Paurine A, Zeinali Heris S, Pourpasha H. Experimental investigation of multiwall carbon nanotubes/water nanofluid pool boiling on smooth and groove surfaces. Int J Energy Res. 2022;46(14):19882–93.

    CAS  Google Scholar 

  9. Parsazadeh M, Duan X. Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit. Appl Energy. 2018;216:142–56.

    CAS  Google Scholar 

  10. Parsazadeh M, Duan X. Numerical and statistical study on melting of nanoparticle enhanced phase change material in a shell-and-tube thermal energy storage system. Appl Therm Eng. 2017;111:950–60.

    CAS  Google Scholar 

  11. Pourpasha H, Heris SZ, Mohammadpourfard M. The effect of TiO2 doped multi-walled carbon nanotubes synthesis on the thermophysical and heat transfer properties of transformer oil: a comprehensive experimental study. Case Stud Thermal Eng. 2023;41: 102607.

    Google Scholar 

  12. Hou Y, Qiu J, Wang W, He X, Ayyub M, Shuai Y. Preparation and performance improvement of chlorides/MgO ceramics shape-stabilized phase change materials with expanded graphite for thermal energy storage system. Appl Energy. 2022;316: 119116.

    CAS  Google Scholar 

  13. Wang T, Tseng K, Zhao J. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model. Appl Therm Eng. 2015;90:521–9.

    Google Scholar 

  14. Pourpasha H, Mohammadfam Y, Khani L, Mohammadpourfard M, Heris SZ. Thermodynamic and thermoeconomic analyses of a new dual-loop organic Rankine-Generator absorber heat exchanger power and cooling cogeneration system. Energy Convers Manage. 2020;224: 113356.

    CAS  Google Scholar 

  15. Sharifi N, Bergman TL, Allen MJ, Faghri A. Melting and solidification enhancement using a combined heat pipe, foil approach. Int J Heat Mass Transf. 2014;78:930–41.

    Google Scholar 

  16. Sunku Prasad J, Anandalakshmi R, Muthukumar P. Numerical investigation on conventional and PCM heat sinks under constant and variable heat flux conditions. Clean Technol Environ Policy. 2021;23(4):1105–20.

    Google Scholar 

  17. Alizadeh H, Pourpasha H, Heris SZ, Estellé P. Experimental investigation on thermal performance of covalently functionalized hydroxylated and non-covalently functionalized multi-walled carbon nanotubes/transformer oil nanofluid. Case Stud Thermal Eng. 2022;31: 101713.

    Google Scholar 

  18. Zeinelabdein R, Omer S, Mohamed E. Parametric study of a sustainable cooling system integrating phase change material energy storage for buildings. J Energy Storage. 2020;32: 101972.

    Google Scholar 

  19. Pourpasha H, Farshad P, Heris SZ. Modeling and optimization the effective parameters of nanofluid heat transfer performance using artificial neural network and genetic algorithm method. Energy Rep. 2021;7:8447–64.

    Google Scholar 

  20. Xu H, Romagnoli A, Sze JY, Py X. Application of material assessment methodology in latent heat thermal energy storage for waste heat recovery. Appl Energy. 2017;187:281–90.

    CAS  Google Scholar 

  21. Dibavar MR, Mohammadpourfard M, Mohseni F, Heris SZ. Numerical study on the effect of non-uniform magnetic fields on melting and solidification characteristics of NEPCMs in an annulus enclosure. Energy Convers Manage. 2018;171:879–89.

    Google Scholar 

  22. Zauner C, Hengstberger F, Etzel M, Lager D, Hofmann R, Walter H. Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM. Appl Energy. 2016;179:237–46.

    CAS  Google Scholar 

  23. Sarier N, Onder E. Organic phase change materials and their textile applications: an overview. Thermochim Acta. 2012;540:7–60.

    CAS  Google Scholar 

  24. Fornarelli F, Camporeale SM, Fortunato B, Torresi M, Oresta P. CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants. Appl Energy. 2016;164:711–22.

    Google Scholar 

  25. Dutil Y, Rousse DR, Salah NB, Lassue S, Zalewski L. A review on phase-change materials: mathematical modeling and simulations. Renew Sustain Energy Rev. 2011;15(1):112–30.

    CAS  Google Scholar 

  26. Al-Abidi AA, Mat SB, Sopian K, Sulaiman M, Mohammed AT. CFD applications for latent heat thermal energy storage: a review. Renew Sustain Energy Rev. 2013;20:353–63.

    CAS  Google Scholar 

  27. Voller VR, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transf. 1987;30(8):1709–19.

    CAS  Google Scholar 

  28. Karimi Shoar Z, Pourpasha H, Zeinali Heris S, Mousavi SB, Mohammadpourfard M. The effect of heat transfer characteristics of macromolecule fouling on heat exchanger surface: a dynamic simulation study. Can J Chem Eng. 2023. https://doi.org/10.1002/cjce.24832.

    Article  Google Scholar 

  29. Gowreesunker B, Tassou S. Effectiveness of CFD simulation for the performance prediction of phase change building boards in the thermal environment control of indoor spaces. Build Environ. 2013;59:612–25.

    Google Scholar 

  30. Iten M, Liu S, Shukla A. Experimental validation of an air-PCM storage unit comparing the effective heat capacity and enthalpy methods through CFD simulations. Energy. 2018;155:495–503.

    Google Scholar 

  31. Brent A, Voller VR, Reid K. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transfer, Part A Appl. 1988;13(3):297–318.

    Google Scholar 

  32. Li Y, Nord N, Xiao Q, Tereshchenko T. Building heating applications with phase change material: a comprehensive review. J Energy Storage. 2020;31: 101634.

    Google Scholar 

  33. Kumar A, Tiwari AK, Said Z. A comprehensive review analysis on advances of evacuated tube solar collector using nanofluids and PCM. Sustain Energy Technol Assess. 2021;47: 101417.

    Google Scholar 

  34. Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Majid MZA. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sustain Energy Rev. 2015;43:843–62.

    CAS  Google Scholar 

  35. Yu J, Yang H, Tao J, Zhao J, Luo Y. Performance evaluation and optimum design of ventilation roofs with different positions of shape-stabilized PCM. Sustainability. 2023;15(11):8721.

    Google Scholar 

  36. Bhamare DK, Rathod MK, Banerjee J. Numerical model for evaluating thermal performance of residential building roof integrated with inclined phase change material (PCM) layer. J Build Eng. 2020;28: 101018.

    Google Scholar 

  37. Zhang Y, Du K, He J, Yang L, Li Y. Impact factors analysis of the enthalpy method and the effective heat capacity method on the transient nonlinear heat transfer in phase change materials (PCMs). Numer Heat Transfer, Part A: Appl. 2014;65(1):66–83.

    CAS  Google Scholar 

  38. Tokuç A, Başaran T, Yesügey SC. An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul. Energy Build. 2015;102:91–104.

    Google Scholar 

  39. Diarce G, Campos-Celador Á, Martin K, Urresti A, García-Romero A, Sala J. A comparative study of the CFD modeling of a ventilated active façade including phase change materials. Appl Energy. 2014;126:307–17.

    Google Scholar 

  40. Khattari Y, Arid A, El Ouali A, Kousksou T, Janajreh I. CFD study on the validity of using PCM in a controlled cooling ceiling integrated in a ventilated room. Develop Built Environ. 2022;9: 100066.

    Google Scholar 

  41. Wang C. A numerical study on applying the movable PCM design to disaster-relief prefabricated temporary houses used in different climate regions to improve indoor thermal environments in summer. Int J Energy Res. 2022;46(14):20401–14.

    Google Scholar 

  42. Hendricks C, Williard N, Mathew S, Pecht M. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. J Power Sources. 2015;297:113–20.

    CAS  Google Scholar 

  43. Chen K, Song M, Wei W, Wang S. Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement. Int J Heat Mass Transf. 2019;132:309–21.

    Google Scholar 

  44. Huo Y, Rao Z, Liu X, Zhao J. Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers Manage. 2015;89:387–95.

    Google Scholar 

  45. Karimi D, Behi H, Van Mierlo J, Berecibar M. Novel hybrid thermal management system for high-power lithium-ion module for electric vehicles: fast charging applications. World Electric Vehicle J. 2022;13(5):86.

    Google Scholar 

  46. Sun Z, Fan R, Yan F, Zhou T, Zheng N. Thermal management of the lithium-ion battery by the composite PCM-Fin structures. Int J Heat Mass Transf. 2019;145: 118739.

    Google Scholar 

  47. Qian Z, Li Y, Rao Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manage. 2016;126:622–31.

    CAS  Google Scholar 

  48. Verma A, Shashidhara S, Rakshit D. A comparative study on battery thermal management using phase change material (PCM). Thermal Sci Eng Progr. 2019;11:74–83.

    Google Scholar 

  49. Ling Z, Chen J, Fang X, Zhang Z, Xu T, Gao X, Wang S. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Appl Energy. 2014;121:104–13.

    CAS  Google Scholar 

  50. Kshetrimayum KS, Yoon YG, Gye HR, Lee CJ. Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system. Appl Therm Eng. 2019;159: 113797.

    Google Scholar 

  51. Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. J Electrochem Soc. 1985;132(1):5.

    CAS  Google Scholar 

  52. Zhao R, Liu J, Gu J. Simulation and experimental study on lithium ion battery short circuit. Appl Energy. 2016;173:29–39.

    CAS  Google Scholar 

  53. An Z, Chen X, Zhao L, Gao Z. Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling. Appl Therm Eng. 2019;163: 114345.

    CAS  Google Scholar 

  54. Xin Q, Xiao J, Yang T, Zhang H, Long X. Thermal management of lithium-ion batteries under high ambient temperature and rapid discharging using composite PCM and liquid cooling. Appl Therm Eng. 2022;210: 118230.

    CAS  Google Scholar 

  55. Kargaran M, Goshayeshi HR, Pourpasha H, Chaer I, Heris SZ. An extensive review on the latest developments of using oscillating heat pipe on cooling of photovoltaic thermal system. Thermal Sci Eng Progr. 2022;36:101489.

    Google Scholar 

  56. Elsheniti MB, Hemedah MA, Sorour M, El-Maghlany WM. Novel enhanced conduction model for predicting performance of a PV panel cooled by PCM. Energy Convers Manage. 2020;205: 112456.

    Google Scholar 

  57. Chaabane M, Mhiri H, Bournot P. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM). Energy Convers Manage. 2014;78:897–903.

    CAS  Google Scholar 

  58. Raj A, Srinivas M, Jayaraj S. CFD modeling of macro-encapsulated latent heat storage system used for solar heating applications. Int J Therm Sci. 2019;139:88–104.

    Google Scholar 

  59. Bashir MA, Giovannelli A. Design optimization of the phase change material integrated solar receiver: a numerical parametric study. Appl Therm Eng. 2019;160: 114008.

    Google Scholar 

  60. Modest MF. Chapter 23-inverse radiative heat transfer. In: Radiative heat transfer. Amsterdam: Elsevier; 2013. p. 779–802.

    Google Scholar 

  61. Ramana A, Venkatesh R, Raj VAA, Velraj R. Experimental investigation of the LHS system and comparison of the stratification performance with the SHS system using CFD simulation. Sol Energy. 2014;103:378–89.

    Google Scholar 

  62. Iranmanesh M, Akhijahani HS, Jahromi MSB. CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renew Energy. 2020;145:1192–213.

    Google Scholar 

  63. Al-Najjar HMT, Mahdi JM. Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/phase-change material (PV/PCM) system. Appl Energy. 2022;315: 119027.

    Google Scholar 

  64. Pavithran A, Sharma M, Shukla AK. An investigation on the effect of PCM incorporation in refrigerator through CFD simulation. Mater Today: Proceed. 2021;46:5555–64.

    Google Scholar 

  65. Zarajabad OG, Ahmadi R. Numerical investigation of different PCM volume on cold thermal energy storage system. J Energy Storage. 2018;17:515–24.

    Google Scholar 

  66. Marques A, Davies G, Maidment G, Evans J, Wood I. Novel design and performance enhancement of domestic refrigerators with thermal storage. Appl Therm Eng. 2014;63(2):511–9.

    Google Scholar 

  67. Elarem R, Mellouli S, Abhilash E, Jemni A. Performance analysis of a household refrigerator integrating a PCM heat exchanger. Appl Therm Eng. 2017;125:1320–33.

    Google Scholar 

  68. Ezan MA, Doganay EO, Yavuz FE, Tavman IH. A numerical study on the usage of phase change material (PCM) to prolong compressor off period in a beverage cooler. Energy Convers Manage. 2017;142:95–106.

    Google Scholar 

  69. Copertaro B, Principi P, Fioretti R. Thermal performance analysis of PCM in refrigerated container envelopes in the Italian context–Numerical modeling and validation. Appl Therm Eng. 2016;102:873–81.

    Google Scholar 

  70. Hu Y, Heiselberg PK, Drivsholm C, Søvsø AS, Vogler-Finck PJ, Kronby K. Experimental and numerical study of PCM storage integrated with HVAC system for energy flexibility. Energy Build. 2022;255: 111651.

    Google Scholar 

  71. Arshad A, Jabbal M, Yan Y. Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics. Energy Convers Manage. 2020;205: 112444.

    CAS  Google Scholar 

  72. Kurhade A, Talele V, Rao TV, Chandak A, Mathew V. Computational study of PCM cooling for electronic circuit of smart-phone. Mater Today: Proceed. 2021;47:3171–6.

    Google Scholar 

  73. Alshaer W, Nada S, Rady M, Le Bot C, Del Barrio EP. Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment. Energy Convers Manage. 2015;89:873–84.

    CAS  Google Scholar 

  74. Huang Z, Xie N, Zheng X, Gao X, Fang X, Fang Y, Zhang Z. Experimental and numerical study on thermal performance of Wood’s alloy/expanded graphite composite phase change material for temperature control of electronic devices. Int J Therm Sci. 2019;135:375–85.

    CAS  Google Scholar 

  75. Tomizawa Y, Sasaki K, Kuroda A, Takeda R, Kaito Y. Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices. Appl Therm Eng. 2016;98:320–9.

    CAS  Google Scholar 

  76. Arshad A, Jabbal M, Sardari PT, Bashir MA, Faraji H, Yan Y. Transient simulation of finned heat sinks embedded with PCM for electronics cooling. Thermal Sci Eng Progr. 2020;18: 100520.

    Google Scholar 

  77. Ghadikolaei S, Siahchehrehghadikolaei S, Gholinia M, Rahimi M. A CFD modeling of heat transfer between CGNPs/H2O Eco-friendly nanofluid and the novel nature-based designs heat sink: hybrid passive techniques for CPU cooling. Thermal Sci Eng Progr. 2023;37: 101604.

    Google Scholar 

  78. Alqallaf HJ, Alawadhi EM. Concrete roof with cylindrical holes containing PCM to reduce the heat gain. Energy Build. 2013;61:73–80.

    Google Scholar 

  79. Essid N, Eddhahak A, Neji J. Experimental and numerical analysis of the energy efficiency of PCM concrete wallboards under different thermal scenarios. J Build Eng. 2022;45: 103547.

    Google Scholar 

  80. Wang P, Liu Z, Xi S, Zhang Y, Zhang L. Experiment and numerical simulation of an adaptive building roof combining variable transparency shape-stabilized PCM. Energy Build. 2022;263: 112030.

    Google Scholar 

  81. Zhao L, Xing Y, Wang Z, Liu X. The passive thermal management system for electronic device using low-melting-point alloy as phase change material. Appl Therm Eng. 2017;125:317–27.

    CAS  Google Scholar 

  82. Youssef W, Ge Y, Tassou S. CFD modelling development and experimental validation of a phase change material (PCM) heat exchanger with spiral-wired tubes. Energy Convers Manage. 2018;157:498–510.

    Google Scholar 

  83. Bonamente E, Aquino A, Cotana F. A PCM thermal storage for ground-source heat pumps: simulating the system performance via CFD approach. Energy Procedia. 2016;101:1079–86.

    Google Scholar 

  84. Peng P, Wang Y, Jiang F. Numerical study of PCM thermal behavior of a novel PCM-heat pipe combined system for Li-ion battery thermal management. Appl Therm Eng. 2022;209: 118293.

    CAS  Google Scholar 

  85. Javani N, Dincer I, Naterer G, Rohrauer G. Modeling of passive thermal management for electric vehicle battery packs with PCM between cells. Appl Therm Eng. 2014;73(1):307–16.

    CAS  Google Scholar 

  86. Kizilel R, Sabbah R, Selman JR, Al-Hallaj S. An alternative cooling system to enhance the safety of Li-ion battery packs. J Power Sources. 2009;194(2):1105–12.

    CAS  Google Scholar 

  87. Wang Z, Zhang H, Xia X. Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure. Int J Heat Mass Transf. 2017;109:958–70.

    CAS  Google Scholar 

  88. Javani N, Dincer I, Naterer G, Yilbas B. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. Int J Heat Mass Transf. 2014;72:690–703.

    CAS  Google Scholar 

  89. Chaouachi B, Gabsi S. Experimental study of integrated collector storage solar water heater under real conditions. Renew Energy Rev. 2006;9(2):75–82.

    Google Scholar 

  90. Trp A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol Energy. 2005;79(6):648–60.

    CAS  Google Scholar 

  91. Muhammad M, Badr O, Yeung H. Validation of a CFD melting and solidification model for phase change in vertical cylinders. Numer Heat Transfer, Part A: Appl. 2015;68(5):501–11.

    Google Scholar 

  92. Karami M, Shahini N, Behabadi MAA. Numerical investigation of double-walled direct absorption evacuated tube solar collector using microencapsulated PCM and nanofluid. J Mol Liq. 2023;377: 121560.

    CAS  Google Scholar 

  93. Zolfalizadeh M, Zeinali Heris S, Pourpasha H, Mohammadpourfard M, Meyer JP. Experimental investigation of the effect of graphene/water nanofluid on the heat transfer of a shell-and-tube heat exchanger. Int J Energy Res. 2023;2023:1–16.

    Google Scholar 

  94. Bondareva NS, Sheremet MA. 3D natural convection melting in a cubical cavity with a heat source. Int J Therm Sci. 2017;115:43–53.

    Google Scholar 

  95. Hosseini M, Rahimi M, Bahrampoury R. Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. Int Commun Heat Mass Transfer. 2014;50:128–36.

    CAS  Google Scholar 

  96. Kozak Y, Rozenfeld T, Ziskind G. Close-contact melting in vertical annular enclosures with a non-isothermal base: theoretical modeling and application to thermal storage. Int J Heat Mass Transf. 2014;72:114–27.

    CAS  Google Scholar 

  97. Liu H, Li S, Chen Y, Sun Z. The melting of phase change material in a cylinder shell with hierarchical heat sink array. Appl Therm Eng. 2014;73(1):975–83.

    CAS  Google Scholar 

  98. Tay N, Belusko M, Castell A, Cabeza LF, Bruno F. An effectiveness-NTU technique for characterising a finned tubes PCM system using a CFD model. Appl Energy. 2014;131:377–85.

    Google Scholar 

  99. Jannesari H, Abdollahi N. Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems. Appl Energy. 2017;189:369–84.

    Google Scholar 

  100. Lohrasbi S, Miry SZ, Gorji-Bandpy M, Ganji DD. Performance enhancement of finned heat pipe assisted latent heat thermal energy storage system in the presence of nano-enhanced H2O as phase change material. Int J Hydrog Energy. 2017;42(10):6526–46.

    CAS  Google Scholar 

  101. Bouhal T, Kousksou T, Jamil A. CFD thermal energy storage enhancement of PCM filling a cylindrical cavity equipped with submerged heating sources. J Energy Storage. 2018;18:360–70.

    Google Scholar 

  102. Soodmand AM, Nejatbakhsh S, Pourpasha H, Aghdasinia H, Heris SZ. Simulation of melting and solidification process of polyethylene glycol 1500 as a PCM in rectangular, triangular, and cylindrical enclosures. Alex Eng J. 2022;61(11):8431–56.

    Google Scholar 

  103. Zhu M, Nan W, Wang Y. Analysis on the thermal behaviour of the latent heat storage system using S-CO2 and H-PCM. Renew Energy. 2023;208:240–50.

    CAS  Google Scholar 

  104. Prieto M, González B. Fluid flow and heat transfer in PCM panels arranged vertically and horizontally for application in heating systems. Renew Energy. 2016;97:331–43.

    CAS  Google Scholar 

  105. Zhou G, Han Y. Numerical simulation on thermal characteristics of supercooled salt hydrate PCM for energy storage: Multiphase model. Appl Therm Eng. 2017;125:145–52.

    Google Scholar 

  106. Ji C, Qin Z, Dubey S, Choo FH, Duan F. Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection. Int J Heat Mass Transf. 2018;127:255–65.

    CAS  Google Scholar 

  107. Zhao C, Wang J, Sun Y, He S, Hooman K. Fin design optimization to enhance PCM melting rate inside a rectangular enclosure. Appl Energy. 2022;321: 119368.

    CAS  Google Scholar 

  108. Arévalo R, Antúnez D, Rebollo L, Abánades A. Estimation of radiation coupling factors in film boiling around spheres by mean of computational fluid dynamics (CFD) tools. Int J Heat Mass Transf. 2014;78:84–9.

    Google Scholar 

  109. Amin N, Bruno F, Belusko M. Effective thermal conductivity for melting in PCM encapsulated in a sphere. Appl Energy. 2014;122:280–7.

    CAS  Google Scholar 

  110. Tay N, Bruno F, Belusko M. Experimental validation of a CFD model for tubes in a phase change thermal energy storage system. Int J Heat Mass Transf. 2012;55(4):574–85.

    CAS  Google Scholar 

  111. Aziz S, Amin N, Majid MA, Belusko M, Bruno F. CFD simulation of a TES tank comprising a PCM encapsulated in sphere with heat transfer enhancement. Appl Therm Eng. 2018;143:1085–92.

    Google Scholar 

  112. Cofré-Toledo J, Roa-Cossio D, Vasco DA, Cabeza LF, Rouault F. Numerical simulation of the melting and solidification processes of two organic phase change materials in spherical enclosures for cold thermal energy storage applications. J Energy Storage. 2022;51: 104337.

    Google Scholar 

  113. Tabassum T, Hasan M, Begum L. 2-D numerical investigation of melting of an impure PCM in the arbitrary-shaped annuli. Int J Therm Sci. 2017;114:296–319.

    Google Scholar 

  114. Elsayed AO. Numerical investigation on PCM melting in triangular cylinders. Alex Eng J. 2018;57(4):2819–28.

    Google Scholar 

  115. Saxena A, Goel V. Solar air heaters with thermal heat storages. Chinese J Eng. 2013;2013:11.

    Google Scholar 

  116. Kasibhatla R, Brüggemann D. Coupled conjugate heat transfer model for melting of PCM in cylindrical capsules. Appl Therm Eng. 2021;184: 116301.

    Google Scholar 

  117. Kasibhatla RR, König-Haagen A, Rösler F, Brüggemann D. Numerical modelling of melting and settling of an encapsulated PCM using variable viscosity. Heat Mass Transf. 2017;53(5):1735–44.

    CAS  Google Scholar 

  118. Selimefendigil F, Öztop HF, Doranehgard MH, Karimi N. Phase change dynamics in a cylinder containing hybrid nanofluid and phase change material subjected to a rotating inner disk. J Energy Storage. 2021;42: 103007.

    Google Scholar 

  119. Shaker MY, Sultan AA, El Negiry EA, Radwan A. Melting and solidification characteristics of cylindrical encapsulated phase change materials. J Energy Storage. 2021;43: 103104.

    Google Scholar 

  120. Rana S, Zunaid M, Kumar R. CFD simulation for heat transfer enhancement in phase change materials. Mater Today: Proceed. 2021;46:10915–21.

    CAS  Google Scholar 

  121. Zhang Y, Bozorg MV, Torres JF, Zhao Y, Wang X. Dynamic melting of encapsulated PCM in various geometries driven by natural convection of surrounding air: a modelling-based parametric study. J Energy Storage. 2022;48: 103975.

    Google Scholar 

  122. Rawat P, Sherwani AF. A numerical study on the impact of fin length arrangement and material on the melting of PCM in a rectangular enclosure. Int J Heat Mass Transf. 2023;205: 123932.

    CAS  Google Scholar 

  123. Cascetta M, Cau G, Puddu P, Serra F. A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system. Appl Therm Eng. 2016;98:1263–72.

    CAS  Google Scholar 

  124. Mousavi S, Kasaeian A, Shafii MB, Jahangir MH. Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system. Energy Convers Manage. 2018;163:187–95.

    CAS  Google Scholar 

  125. Sardari PT, Mohammed HI, Giddings D, Gillott M, Grant D. Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: effect of porosity, pore density and location of heat source. Energy. 2019;189: 116108.

    Google Scholar 

  126. Tian Y, Zhao C-Y. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy. 2011;36(9):5539–46.

    CAS  Google Scholar 

  127. Hu X, Gong X. Pore-scale numerical simulation of the thermal performance for phase change material embedded in metal foam with cubic periodic cell structure. Appl Therm Eng. 2019;151:231–9.

    CAS  Google Scholar 

  128. Li C, Li Q, Ding Y. Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials. Appl Energy. 2019;247:374–88.

    CAS  Google Scholar 

  129. Chan KC, Chao CY. A theoretical model on the effective stagnant thermal conductivity of an adsorbent embedded with a highly thermal conductive material. Int J Heat Mass Transf. 2013;65:863–72.

    Google Scholar 

  130. Li C, Li Q, Cao H, Leng G, Li Y, Wang L, Zheng L, Ding Y. Wettability of eutectic NaLiCO3 salt on magnesium oxide substrates at 778 K. Appl Surf Sci. 2018;442:148–55.

    CAS  Google Scholar 

  131. Esence T, Bruch A, Molina S, Stutz B, Fourmigué J-F. A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems. Sol Energy. 2017;153:628–54.

    Google Scholar 

  132. Oró E, Castell A, Chiu J, Martin V, Cabeza LF. Stratification analysis in packed bed thermal energy storage systems. Appl Energy. 2013;109:476–87.

    Google Scholar 

  133. Talebizadeh Sardari P, Walker GS, Gillott M, Grant D, Giddings D. Numerical modelling of phase change material melting process embedded in porous media: effect of heat storage size. Proceed Instit Mech Eng, Part A: J Power Energy. 2020;234(3):365–83.

    Google Scholar 

  134. Mol J, Shahi M, Mahmoudi A. Numerical modeling of thermal storage performance of encapsulated PCM particles in an unstructured packed bed. Energies. 2020;13(23):6413.

    Google Scholar 

  135. Mohammadnejad F, Hossainpour S. A CFD modeling and investigation of a packed bed of high temperature phase change materials (PCMs) with different layer configurations. J Energy Storage. 2020;28: 101209.

    Google Scholar 

  136. Agyenim F, Eames P, Smyth M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Sol Energy. 2009;83(9):1509–20.

    CAS  Google Scholar 

  137. Ismail K, Alves C, Modesto M. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl Therm Eng. 2001;21(1):53–77.

    CAS  Google Scholar 

  138. Ranjbaran YS, Haghparast SJ, Shojaeefard M, Molaeimanesh G. Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries. J Therm Anal Calorim. 2020;141(5):1717–39.

    CAS  Google Scholar 

  139. Shmueli H, Ziskind G, Letan R. Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. Int J Heat Mass Transf. 2010;53(19–20):4082–91.

    CAS  Google Scholar 

  140. Luo X, Gu J, Ma H, Xie Y, Li A, Wang J, Ding R. Numerical study on enhanced melting heat transfer of PCM by the combined fractal fins. J Energy Storage. 2022;45: 103780.

    Google Scholar 

  141. Nóbrega CR, Ismail KA, Lino FA. Enhancement of ice formation around vertical finned tubes for cold storage applications. Int J Refrig. 2019;99:251–63.

    Google Scholar 

  142. Tay N, Belusko M, Liu M, Bruno F. Investigation of the effect of dynamic melting in a tube-in-tank PCM system using a CFD model. Appl Energy. 2015;137:738–47.

    Google Scholar 

  143. Tay N, Bruno F, Belusko M. Experimental validation of a CFD and an ε-NTU model for a large tube-in-tank PCM system. Int J Heat Mass Transf. 2012;55(21–22):5931–40.

    CAS  Google Scholar 

  144. Ma Y, Tao Y, Shi L, Wang Y, Tu J. Natural convection and structural impact of rectangular PCM storage units through the modular expansion. J Energy Storage. 2023;68: 107781.

    Google Scholar 

  145. Ma Y, Tao Y, Shi L, Wang Y, Tu J, Wang L. Thermal performance improvement of a low-temperature thermal energy storage with configuration optimization. J Energy Storage. 2023;60: 106620.

    Google Scholar 

  146. Browne MC, Norton B, McCormack SJ. Heat retention of a photovoltaic/thermal collector with PCM. Sol Energy. 2016;133:533–48.

    Google Scholar 

  147. Kamkari B, Shokouhmand H, Bruno F. Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure. Int J Heat Mass Transf. 2014;72:186–200.

    CAS  Google Scholar 

  148. Shokouhmand H, Kamkari B. Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Exp Thermal Fluid Sci. 2013;50:201–12.

    CAS  Google Scholar 

  149. Chen SL, Lee TS. A study of supercooling phenomenon and freezing probability of water inside horizontal cylinders. Int J Heat Mass Transf. 1998;41(4–5):769–83.

    CAS  Google Scholar 

  150. Xu WQ, Yuan XG, Li Z. Study on effective thermal conductivity of metal foam matrix composite phase change materials. J Funct Mater. 2009;8(10):1329–37.

    Google Scholar 

  151. Ying Q, Wang H, Lichtfouse E. Numerical simulation on thermal behavior of partially filled metal foam composite phase change materials. Appl Therm Eng. 2023;229: 120573.

    CAS  Google Scholar 

  152. Zheng ZJ, Yang C, Xu Y, Cai X. Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity. Renew Energy. 2021;172:802–15.

    Google Scholar 

  153. Rawat P, Goyal A, Sherwani AF. A comparative numerical study about the impact of rectangular and T shaped fins on melting of PCM in a rectangular enclosure. Appl Therm Eng. 2023;228: 120461.

    CAS  Google Scholar 

  154. Kumaresan G, Raju G, Iniyan S, Velraj R. CFD analysis of flow and geometric parameter for a double walled solar cooking unit. Appl Math Model. 2015;39(1):137–46.

    Google Scholar 

  155. Tripathi S, Tomar A. CFD Analysis and Melting Performance of PCMs in two dimensional sphere. Int Res J Eng Technol. 2017;4(7):3350–8.

    Google Scholar 

  156. Kumarasamy K, An J, Yang J, Yang E-H. Novel CFD-based numerical schemes for conduction dominant encapsulated phase change materials (EPCM) with temperature hysteresis for thermal energy storage applications. Energy. 2017;132:31–40.

    Google Scholar 

  157. Lin Q, Wang S, Ma Z, Wang J, Zhang T. Lattice Boltzmann simulation of flow and heat transfer evolution inside encapsulated phase change materials due to natural convection melting. Chem Eng Sci. 2018;189:154–64.

    CAS  Google Scholar 

  158. Yazici MY, Avci M, Aydin O, Akgun M. On the effect of eccentricity of a horizontal tube-in-shell storage unit on solidification of a PCM. Appl Therm Eng. 2014;64(1–2):1–9.

    CAS  Google Scholar 

  159. Ali M, Zeitoun O, Nuhait A. Forced convection heat transfer over horizontal triangular cylinder in cross flow. Int J Therm Sci. 2011;50(1):106–14.

    Google Scholar 

  160. Pourpasha H, Zeinali Heris S, Mohammadfam Y. Comparison between multi-walled carbon nanotubes and titanium dioxide nanoparticles as additives on performance of turbine meter oil nano lubricant. Scient Rep. 2021;11(1):11064.

    CAS  Google Scholar 

  161. Liu J, Chen Z, Liu Y, Liu Z, Ren Y, Xue Y, Zhu B, Wang R, Zhang Q. Preparation of a PCM microcapsule with a graphene oxide platelet-patched shell and its thermal camouflage applications. Ind Eng Chem Res. 2019;58(41):19090–9.

    CAS  Google Scholar 

  162. Nejatbakhsh S, Aghdasinia H, Ebrahimi Farshchi M, Azimi B, Karimi A. Adsorptive desulfurization of liquid hydrocarbons utilizing granular Cu/Cr-BDC@ γ-Al2O3 bimetal-organic frameworks. Ind Eng Chem Res. 2022;61(32):11617–27.

    CAS  Google Scholar 

  163. Khataee A, Farshchi ME, Fathinia M, Aghdasinia H. Photocatalytic ozonation process for degradation of an anthelmintic drug using ceramic coated TiO2 NPs: CFD simulation coupling with kinetic mechanisms. Process Saf Environ Prot. 2020;141:37–48.

    CAS  Google Scholar 

  164. Ehsani A, Aghdasinia H, Farshchi ME, Rostamnia S, Khataee A. Synthesis of sodium alginate/carboxy-methyl cellulose/Cu-based metal-organic framework composite for adsorption of tetracycline from aqueous solution: isotherm, kinetic and thermodynamic approach. Surf Interfaces. 2023;36: 102506.

    CAS  Google Scholar 

  165. Ebrahimi Farshchi M, Aghdasinia H, Rostamnia S, Sillanpää M (2023) Catalytic adsorptive elimination of deleterious contaminant in a pilot fluidised-bed reactor by granulated Fe3O4/Cu-MOF/cellulose nanocomposites: RSM optimisation and CFD approach. Int J Environ Analyt Chem, pp. 1–22. https://doi.org/10.1080/03067319.2023.2170752

  166. Miao W, Gan S, Li X, Lv Y. A triply synergistic method for palygorskite activation to effectively impregnate phase change materials (PCMs) for thermal energy storage. Appl Clay Sci. 2020;189: 105530.

    CAS  Google Scholar 

  167. Yang L, Zhang N, Yuan Y, Cao X, Xiang B. Thermal performance of stearic acid/carbon nanotube composite phase change materials for energy storage prepared by ball milling. Int J Energy Res. 2019;43(12):6327–36.

    CAS  Google Scholar 

  168. Yan T, Li Z, Pan W. 3D network structural shape-stabilized composite PCMs for integrated enhancement of thermal conductivity and photothermal properties. Sol Energy Mater Sol Cells. 2022;240: 111645.

    CAS  Google Scholar 

  169. Latibari ST, Mehrali M, Mehrali M, Mahlia TMI, Metselaar HSC. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. Energy. 2013;61:664–72.

    Google Scholar 

  170. Sarkar S, Mestry S, Mhaske S. Developments in phase change material (PCM) doped energy efficient polyurethane (PU) foam for perishable food cold-storage applications: a review. J Energy Storage. 2022;50: 104620.

    Google Scholar 

  171. Ehsani A, Nejatbakhsh S, Soodmand AM, Farshchi ME, Aghdasinia H. High-performance catalytic reduction of 4-nitrophenol to 4-aminophenol using M-BDC (M= Ag Co, Cr, Mn, and Zr) metal-organic frameworks. Environ Res. 2023;227: 115736.

    CAS  PubMed  Google Scholar 

  172. Wang W, He S, Guo S, Yan J, Ding J. A combined experimental and simulation study on charging process of Erythritol–HTO direct-blending based energy storage system. Energy Convers Manage. 2014;83:306–13.

    CAS  Google Scholar 

  173. Kotzé JP, Von Backström T, Erens P. Simulation and testing of a latent heat thermal energy storage unit with metallic phase change material. Energy Procedia. 2014;49:860–9.

    Google Scholar 

  174. Hoshi A, Mills DR, Bittar A, Saitoh TS. Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. Sol Energy. 2005;79(3):332–9.

    CAS  Google Scholar 

  175. Chen J, Ling Z, Fang X, Zhang Z. Experimental and numerical investigation of form-stable dodecane/hydrophobic fumed silica composite phase change materials for cold energy storage. Energy Convers Manage. 2015;105:817–25.

    CAS  Google Scholar 

  176. Abdollahzadeh M, Esmaeilpour M. Enhancement of phase change material (PCM) based latent heat storage system with nano fluid and wavy surface. Int J Heat Mass Transf. 2015;80:376–85.

    CAS  Google Scholar 

  177. Xiao X, Zhang P, Li M. Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage. Energy Convers Manage. 2015;105:272–84.

    CAS  Google Scholar 

  178. Mahdi JM, Nsofor EC. Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system. Appl Therm Eng. 2016;108:596–604.

    CAS  Google Scholar 

  179. Chen C, Zhang H, Gao X, Xu T, Fang Y, Zhang Z. Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM. Energy Convers Manage. 2016;126:889–97.

    CAS  Google Scholar 

  180. Alipanah M, Li X. Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams. Int J Heat Mass Transf. 2016;102:1159–68.

    CAS  Google Scholar 

  181. Othman HA, Rguigui H, Altoum SH, Elamin MA. Nanomaterial efficacy on freezing of PCM with involvement of numerical simulation. J Mol Liq. 2022;362: 119658.

    CAS  Google Scholar 

  182. Alhusseny A, Al-Zurfi N, Nasser A, Al-Fatlawi A, Aljanabi M. Impact of using a PCM-metal foam composite on charging/discharging process of bundled-tube LHTES units. Int J Heat Mass Transf. 2020;150: 119320.

    Google Scholar 

  183. Zeneli M, et al. Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures. Appl Energy. 2019;242:837–53.

    CAS  Google Scholar 

  184. Assis E, Katsman L, Ziskind G, Letan R. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf. 2007;50(9–10):1790–804.

    Google Scholar 

  185. Zheng X, Zhou Y. A three-dimensional unsteady numerical model on a novel aerogel-based PV/T-PCM system with dynamic heat-transfer mechanism and solar energy harvesting analysis. Appl Energy. 2023;338: 120899.

    CAS  Google Scholar 

  186. Zhao L, Bhatia B, Yang S, Strobach E, Weinstein LA, Cooper TA, Chen G, Wang EN. Harnessing heat beyond 200 C from unconcentrated sunlight with nonevacuated transparent aerogels. ACS Nano. 2019;13(7):7508–16.

    CAS  PubMed  Google Scholar 

  187. Su D, Jia Y, Lin Y, Fang G. Maximizing the energy output of a photovoltaic–thermal solar collector incorporating phase change materials. Energy Build. 2017;153:382–91.

    Google Scholar 

  188. Aydın O, Akgün M, Kaygusuz K. An experimental optimization study on a tube-in-shell latent heat storage. Int J Energy Res. 2007;31(3):274–87.

    Google Scholar 

  189. Momeni M, Fartaj A. Numerical thermal performance analysis of a PCM-to-air and liquid heat exchanger implementing latent heat thermal energy storage. J Energy Storage. 2023;58: 106363.

    Google Scholar 

  190. Fotowat S, Askar S, Fartaj A. Experimental transient response of a minichannel heat exchanger with step flow variation. Exp Thermal Fluid Sci. 2017;89:128–39.

    Google Scholar 

  191. Kong W, Wang G, Englmair G, Nielsen ENN, Dragsted J, Furbo S, Fan J. A simplified numerical model of PCM water energy storage. J Energy Storage. 2022;55: 105425.

    Google Scholar 

  192. Sciacovelli A, Colella F, Verda V. Melting of PCM in a thermal energy storage unit: numerical investigation and effect of nanoparticle enhancement. Int J Energy Res. 2013;37(13):1610–23.

    CAS  Google Scholar 

  193. Shakibi H, Shokri A, Sobhani B, Yari M. Numerical analysis and optimization of a novel photovoltaic thermal solar unit improved by Nano-PCM as an energy storage media and finned collector. Renew Sustain Energy Rev. 2023;179: 113230.

    CAS  Google Scholar 

  194. Khanjari Y, Kasaeian A, Pourfayaz F. Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid. Appl Therm Eng. 2017;115:178–87.

    CAS  Google Scholar 

  195. Selmi M, Al-Khawaja MJ, Marafia A. Validation of CFD simulation for flat plate solar energy collector. Renew Energy. 2008;33(3):383–7.

    CAS  Google Scholar 

  196. Al-Abidi AA, Mat S, Sopian K, Sulaiman M, Mohammad AT. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transf. 2013;61:684–95.

    Google Scholar 

  197. Darzi AR, Farhadi M, Sedighi K. Numerical study of melting inside concentric and eccentric horizontal annulus. Appl Math Model. 2012;36(9):4080–6.

    Google Scholar 

  198. Samimi F, Babapoor A, Azizi M, Karimi G. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy. 2016;96:355–71.

    CAS  Google Scholar 

  199. Anter AG, Sultan AA, Hegazi A, El Bouz M. Thermal performance and energy saving using phase change materials (PCM) integrated in building walls. J Energy Storage. 2023;67: 107568.

    Google Scholar 

  200. Sun W, Zhang Z, Wu Z, Xu Y. Numerical modeling and optimization of annual thermal characteristics of an office room with PCM active–passive coupling system. Energy Build. 2022;254: 111629.

    Google Scholar 

  201. Tabares-Velasco PC, Christensen C, Bianchi M. Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Build Environ. 2012;54:186–96.

    Google Scholar 

  202. Ramakrishnan S, Wang X, Alam M, Sanjayan J, Wilson J. Parametric analysis for performance enhancement of phase change materials in naturally ventilated buildings. Energy Build. 2016;124:35–45.

    Google Scholar 

  203. Guarino F, Athienitis A, Cellura M, Bastien D. PCM thermal storage design in buildings: experimental studies and applications to solaria in cold climates. Appl Energy. 2017;185:95–106.

    CAS  Google Scholar 

  204. Jin Q, Long X, Liang R. Numerical analysis on the thermal performance of PCM-integrated thermochromic glazing systems. Energy Build. 2022;257: 111734.

    Google Scholar 

  205. Gowreesunker B, Stankovic S, Tassou S, Kyriacou P. Experimental and numerical investigations of the optical and thermal aspects of a PCM-glazed unit. Energy Build. 2013;61:239–49.

    Google Scholar 

Download references

Funding

The present research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

The contribution of all authors to the manuscript is the same.

Corresponding author

Correspondence to S. Zeinali Heris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soodmand, A.M., Azimi, B., Nejatbakhsh, S. et al. A comprehensive review of computational fluid dynamics simulation studies in phase change materials: applications, materials, and geometries. J Therm Anal Calorim 148, 10595–10644 (2023). https://doi.org/10.1007/s10973-023-12438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12438-0

Keywords

Navigation