Skip to main content
Log in

Preparation and optimization of nanoencapsulated capric acid being as a renewable phase change material with TiO2 shell as shape-stabilized thermal energy storage material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Novel core-shell nanostructures containing renewable capric acid (CA) core (as a high potential phase change material) and TiO2 (as a highly stable shell) were synthesized using a solgel method for thermal energy storage. Remarkably, CA, a fatty acid available in some vegetable oils, is a renewable phase change material with no undesired environmental impacts. A central composite design of response surface methodology was implemented to determine the effect of the mass ratio of CA/TNBT and the pH value on the encapsulation ratio. As the quadratic mathematical model was used to optimize the process parameters, the maximum encapsulation ratio of 56.67% was achieved, where the CA/TNBT mass ratio was 8.10, and the pH value was 2.65. The measured thermal properties indicated that NEPCMs melt at 31.1 °C with a latent heat of 88.8 J g−1 and solidify at 28.9 °C with a latent heat of 84.23 J g−1. The chemical structure and crystalline phase were measured using Fourier transformation infrared spectroscope and X-ray diffractometer. The thermal stability of the NEPCMs was analyzed by a thermogravimetric analyzer. According to the morphological images, the nanocapsules showed almost spherical shapes with an average size of 100–500 nm. The thermal cycling tests show the high thermal reliability of NEPCMs after the 50th melting/solidifying cycle. The results indicated that the prepared NEPCMs have good thermal stability and reliability for thermal energy storage; hence, they can be applied in building energy conservation and air-conditioning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rostamizadeh M, Khanlarkhani M, Sadrameli SM. Simulation of energy storage system with phase change material (PCM). Energy Build. 2012;49:419–22. https://doi.org/10.1016/j.enbuild.2012.02.037.

    Article  Google Scholar 

  2. Huang X, Chen X, Li A, Atinafu D, Gao H, Dong W, Wang G. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J. 2019;356:641–61. https://doi.org/10.1016/j.cej.2018.09.013.

    Article  CAS  Google Scholar 

  3. Jafaripour M, Sadrameli SM, Pahlavanzadeh H, Mousavi SS. Fabrication and optimization of kaolin/stearic acid composite as a form-stable phase change material for application in the thermal energy storage systems. J Energy Storage. 2021;33:102155. https://doi.org/10.1016/j.est.2020.102155.

    Article  Google Scholar 

  4. Roghabadi FA, Alidaei M, Mousavi SM, Ashjari T, Tehrani AS, Ahmadi V, Sadrameli SM. Stability progress of perovskite solar cells dependent on the crystalline structure: from 3D ABX 3 to 2D Ruddlesden-Popper perovskite absorbers. J Mater Chem A. 2019;7(11):5898–933. https://doi.org/10.1039/C8TA10444A.

    Article  Google Scholar 

  5. Sarı A, Alkan C, Döğüşcü DK, Biçer A. Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol Energy Mater Sol Cells. 2014;126:42–50. https://doi.org/10.1016/j.solmat.2014.03.023.

    Article  CAS  Google Scholar 

  6. Tang F, Liu L, Alva G, Jia Y, Fang G. Synthesis and properties of microencapsulated octadecane with silica shell as shape–stabilized thermal energy storage materials. Sol Energy Mater Sol Cells. 2017;160:1–6. https://doi.org/10.1016/j.solmat.2016.10.014.

    Article  CAS  Google Scholar 

  7. Irani F, Ranjbar Z, Moradian S, Jannesari A. Microencapsulation of n-heptadecane phase change material with starch shell. Prog Org Coat. 2017;113:31–8. https://doi.org/10.1016/j.porgcoat.2017.08.006.

    Article  CAS  Google Scholar 

  8. Jamekhorshid A, Sadrameli SM, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev. 2014;31:531–42. https://doi.org/10.1016/j.rser.2013.12.033.

    Article  CAS  Google Scholar 

  9. Frigione M, Lettieri M, Sarcinella A. Phase change materials for energy efficiency in buildings and their use in mortars. Materials. 2019;12(8):1260. https://doi.org/10.3390/ma12081260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sami S, Sadrameli SM, Etesami N. Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems. Appl Therm Eng. 2018;130:1416–24. https://doi.org/10.1016/j.applthermaleng.2017.11.119.

    Article  CAS  Google Scholar 

  11. Fang G, Chen Z, Li H. Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chem eng J. 2010;163(1–2):154–9. https://doi.org/10.1016/j.cej.2010.07.054.

    Article  CAS  Google Scholar 

  12. Jamekhorshid A, Sadrameli SM, Barzin R, Farid MM. Composite of wood-plastic and micro-encapsulated phase change material (MEPCM) used for thermal energy storage. Appl Therm Eng. 2017;112:82–8. https://doi.org/10.1016/j.applthermaleng.2016.10.037.

    Article  CAS  Google Scholar 

  13. Shchukina EM, Graham M, Zheng Z, Shchukin DG. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem Soc Rev. 2018;47(11):4156–75. https://doi.org/10.1039/C8CS00099A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alva G, Huang X, Liu L, Fang G. Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage. Appl Energy. 2017;203:677–85. https://doi.org/10.1016/j.apenergy.2017.06.082.

    Article  CAS  Google Scholar 

  15. Alva G, Lin Y, Liu L, Fang G. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy Build. 2017;144:276–94. https://doi.org/10.1016/j.enbuild.2017.03.063.

    Article  Google Scholar 

  16. Zhang H, Wang X, Wu D. Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J colloid and interface sci. 2010;343(1):246–55. https://doi.org/10.1016/j.jcis.2009.11.036.

    Article  CAS  Google Scholar 

  17. He F, Wang X, Wu D. New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor. Energy. 2014;67:223–33. https://doi.org/10.1016/j.energy.2013.11.088.

    Article  CAS  Google Scholar 

  18. Fei B, Lu H, Qi K, Shi H, Liu T, Li X, Xin JH. Multi-functional microcapsules produced by aerosol reaction. J Aerosol Sci. 2008;39(12):1089–98. https://doi.org/10.1016/j.jaerosci.2008.07.007.

    Article  CAS  Google Scholar 

  19. Cao L, Tang F, Fang G. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy Build. 2014;72:31–7. https://doi.org/10.1016/j.enbuild.2013.12.028.

    Article  Google Scholar 

  20. Lin Y, Zhu C, Alva G, Fang G. Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage. Appl Energy. 2018;231:494–501. https://doi.org/10.1016/j.apenergy.2018.09.154.

    Article  CAS  Google Scholar 

  21. Hawlader MN, Uddin MS, Khin MM. Microencapsulated PCM thermal-energy storage system. Appl Energy. 2003;74(1–2):195–202. https://doi.org/10.1016/S0306-2619(02)00146-0.

    Article  CAS  Google Scholar 

  22. Borreguero AM, Valverde JL, Rodríguez JF, Barber AH, Cubillo JJ, Carmona M. Synthesis and characterization of microcapsules containing Rubitherm® RT27 obtained by spray drying. Chem Eng J. 2011;166(1):384–90. https://doi.org/10.1016/j.cej.2010.10.055.

    Article  CAS  Google Scholar 

  23. Jamekhorshid A, Sadrameli SM, Bahramian AR. Process optimization and modeling of microencapsulated phase change material using response surface methodology. Appl Therm Eng. 2014;70(1):183–9. https://doi.org/10.1016/j.applthermaleng.2014.05.011.

    Article  CAS  Google Scholar 

  24. Sánchez-Silva L, Rodríguez JF, Romero A, Borreguero AM, Carmona M, Sánchez P. Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation. Chem Eng J. 2010;157(1):216–22. https://doi.org/10.1016/j.cej.2009.12.013.

    Article  CAS  Google Scholar 

  25. Tang X, Li W, Zhang X, Shi H. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage. Energy. 2014;68:160–6. https://doi.org/10.1016/j.energy.2014.03.002.

    Article  CAS  Google Scholar 

  26. Sarkar S, Kim B. Synthesis of graphene oxide–epoxy resin encapsulated urea–formaldehyde microcapsule by in situ polymerization process. Polym Compos. 2018;39(3):636–44. https://doi.org/10.1002/pc.23979.

    Article  CAS  Google Scholar 

  27. Yu Q, Tchuenbou-Magaia F, Al-Duri B, Zhang Z, Ding Y, Li Y. Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage. Appl Energy. 2018;211:1190–202. https://doi.org/10.1016/j.apenergy.2017.12.021.

    Article  CAS  Google Scholar 

  28. Sarier N, Onder E, Ukuser G. Silver incorporated microencapsulation of n-hexadecane and n-octadecane appropriate for dynamic thermal management in textiles. Thermochim Acta. 2015;613:17–27. https://doi.org/10.1016/j.tca.2015.05.015.

    Article  CAS  Google Scholar 

  29. Salaün F, Bedek G, Devaux E, Dupont D, Gengembre L. Microencapsulation of a cooling agent by interfacial polymerization: influence of the parameters of encapsulation on poly (urethane–urea) microparticles characteristics. J membrane sci. 2011;370(1–2):23–33. https://doi.org/10.1016/j.memsci.2010.11.033.

    Article  CAS  Google Scholar 

  30. Liu H, Wang X, Wu D, Ji S. Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation. Energy. 2019;172:599–617. https://doi.org/10.1016/j.energy.2019.01.151.

    Article  CAS  Google Scholar 

  31. Santos MG, Bozza FT, Thomazini M, Favaro-Trindade CS. Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chem. 2015;171:32–9. https://doi.org/10.1016/j.foodchem.2014.08.093.

    Article  CAS  PubMed  Google Scholar 

  32. Lin Y, Zhu C, Fang G. Synthesis and properties of microencapsulated stearic acid/silica composites with graphene oxide for improving thermal conductivity as novel solar thermal storage materials. Sol Energy Mater Sol Cells. 2019;189:197–205. https://doi.org/10.1016/j.solmat.2018.10.005.

    Article  CAS  Google Scholar 

  33. Latibari ST, Mehrali M, Mehrali M, Mahlia TM, Metselaar HS. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. Energy. 2013;61:664–72. https://doi.org/10.1016/j.energy.2013.09.012.

    Article  CAS  Google Scholar 

  34. Cao L, Tang F, Fang G. Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials. Sol Energy Mater Sol Cells. 2014;123:183–8. https://doi.org/10.1016/j.solmat.2014.01.023.

    Article  CAS  Google Scholar 

  35. Latibari ST, Mehrali M, Mehrali M, Afifi AB, Mahlia TM, Akhiani AR, Metselaar HS. Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method. Energy. 2015;85:635–44. https://doi.org/10.1016/j.energy.2015.04.008.

    Article  CAS  Google Scholar 

  36. Zhao L, Wang H, Luo J, Liu Y, Song G, Tang G. Fabrication and properties of microencapsulated n-octadecane with TiO2 shell as thermal energy storage materials. Sol Energy. 2016;127:28–35. https://doi.org/10.1016/j.solener.2016.01.018.

    Article  CAS  Google Scholar 

  37. Wang H, Li Y, Zhao L, Shi X, Song G, Tang G. A facile approach to synthesize microencapsulated phase change materials embedded with silver nanoparicle for both thermal energy storage and antimicrobial purpose. Energy. 2018;158:1052–9. https://doi.org/10.1016/j.energy.2018.06.118.

    Article  CAS  Google Scholar 

  38. Wang H, Zhao L, Song G, Tang G, Shi X. Organic-inorganic hybrid shell microencapsulated phase change materials prepared from SiO2/TiC-stabilized pickering emulsion polymerization. Sol Energy Mater Sol Cells. 2018;175:102–10. https://doi.org/10.1016/j.solmat.2017.09.015.

    Article  CAS  Google Scholar 

  39. Yin D, Ma L, Liu J, Zhang Q. Pickering emulsion: a novel template for microencapsulated phase change materials with polymer–silica hybrid shell. Energy. 2014;64:575–81. https://doi.org/10.1016/j.solmat.2017.09.015.

    Article  CAS  Google Scholar 

  40. Sami S, Etesami N. Thermal characterization of obtained microencapsulated paraffin under optimal conditions for thermal energy storage. J Therm Anal Calorim. 2017;130:1961–71. https://doi.org/10.1007/s10973-017-6516-9.

    Article  CAS  Google Scholar 

  41. Mert MS, Mert HH, Sert M. Investigation of thermal energy storage properties of a microencapsulated phase change material using response surface experimental design methodology. Appl Therm Eng. 2019;149:401–13. https://doi.org/10.1016/j.applthermaleng.2018.12.064.

    Article  CAS  Google Scholar 

  42. Aranzabe E, Arriortua MI, Larrañaga A, Aranzabe A, Villasante PM, March R. Designing multifunctional pigments for an improved energy efficiency in buildings. Energy Build. 2017;147:9–13. https://doi.org/10.1016/j.enbuild.2017.04.081.

    Article  Google Scholar 

  43. Soleimanpour S, Sadrameli SM, Mousavi SA, Jafaripour M. Preparation and characterization of high temperature shape stable NaNO3/diatomite phase change materials with nanoparticles for solar energy storage applications. J Energy Storage. 2022;45:103735. https://doi.org/10.1016/j.est.2021.103735.

    Article  Google Scholar 

  44. Alizadeh M, Sadrameli SM. Indoor thermal comfort assessment using PCM based storage system integrated with ceiling fan ventilation: experimental design and response surface approach. Energy Build. 2019;188:297–313. https://doi.org/10.1016/j.enbuild.2019.02.020.

    Article  Google Scholar 

  45. Jafaripour M, Sadrameli SM, Mousavi SA, Soleimanpour S. Experimental investigation for the thermal management of a coaxial electrical cable system using a form-stable low temperature phase change material. J Energy Storage. 2021;44:103450. https://doi.org/10.1016/j.est.2021.103450.

    Article  Google Scholar 

  46. Sutaphanit P, Chitprasert P. Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chem. 2014;150:313–20. https://doi.org/10.1016/j.foodchem.2013.10.159.

    Article  CAS  PubMed  Google Scholar 

  47. Rade LL, Lemos CO, de Souza Barrozo MA, Ribas RM, de Souza MR, Hori CE. Optimization of esterification reaction over niobium phosphate in a packed bed tubular reactor. Renew Energy. 2019;131:348–55. https://doi.org/10.1016/j.renene.2018.07.041.

    Article  CAS  Google Scholar 

  48. Quanhong L, Caili F. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chem. 2005;92(4):701–6. https://doi.org/10.1016/j.foodchem.2004.08.042.

    Article  CAS  Google Scholar 

  49. Guo Y, Zhang M, Liu Z, Tian X, Zhang S, Zhao C, Lu H. Modeling and optimizing the synthesis of urea-formaldehyde fertilizers and analyses of factors affecting these processes. Sci Rep. 2018;8(1):4504. https://doi.org/10.1038/s41598-018-22698-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu S, Wang X, Wu D. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl energy. 2014;114:632–43. https://doi.org/10.1016/j.apenergy.2013.10.029.

    Article  CAS  Google Scholar 

  51. Wang LY, Tsai PS, Yang YM. Preparation of silica microspheres encapsulating phase-change material by sol-gel method in O/W emulsion. J microencaps. 2006;23(1):3–14. https://doi.org/10.1080/02652040500286045.

    Article  CAS  Google Scholar 

  52. Ali HH, Ghareeb MM, Al-Remawi M, Al-Akayleh FT. New insight into single phase formation of capric acid/menthol eutectic mixtures by Fourier-transform infrared spectroscopy and differential scanning calorimetry. J Pharm Res. 2020;19(2):361–9. https://doi.org/10.4314/tjpr.v19i2.19.

    Article  CAS  Google Scholar 

  53. Yanghua CH, Yuan LI, Zhaohe WA. Preparation and characteristics of microencapsulated lauric acid as composite thermal energy storage materials. Mater Sci. 2020;26(1):88–93. https://doi.org/10.5755/ms.26.1.21303.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Research Department of Tarbiat Modares University (Grant No. 39710) during the research. We are also thankful to Mr. S.A.H. Seyed Mousavi in the Energy Engineering Laboratory at TMU for his continuous assistance during the experimental runs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Mojtaba Sadrameli or Farzaneh Arabpour Roghabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikoonahad, M., Sadrameli, S.M. & Arabpour Roghabadi, F. Preparation and optimization of nanoencapsulated capric acid being as a renewable phase change material with TiO2 shell as shape-stabilized thermal energy storage material. J Therm Anal Calorim 148, 10735–10747 (2023). https://doi.org/10.1007/s10973-023-12436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12436-2

Keywords

Navigation