Skip to main content
Log in

Thermal degradation kinetics and solvent transport behavior of natural rubber composites filled with polyurethane rich shoe sole waste from footwear industry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Industrial waste disposal is one of the major environmental concerns faced by all nations today. The present work describes the thermal degradation kinetics of polyurethane rich shoe sole waste (PUW) filled natural rubber (NR) composites and their transport behavior in various solvents. NR composites with PUW were prepared by incorporating it in the range 0–10 phr (parts per hundred rubber). The thermal behavior of the NR-PUW composites was researched by thermogravimetric analysis (TGA) at 30–600 °C. Kinetics of thermal degradation was studied by plotting thermogravimetric curve at four distinct heating rates, viz., 7.5, 10, 15, 20 °C min−1. The energy of activation (Ea) calculated using Flynn–Wall–Oszaka (FWO), Kissinger–Akahira–Sunose (KAS), Tang and Starink models were found to be well correlated. The NR composite with 7.5 phr PUW showed higher Ea proving its better thermal stability compared to other composites. Multi-step degradation kinetics of the composites was evidenced by the variation in energy of activation as conversion increases. The solvent transport behavior of the composites was investigated in toluene, xylene, hexane, and petrol. Swelling was found to be maximum for toluene and solvent uptake decreases with further PUW loading. The diffusion parameters of the composites exhibited a decreasing trend as PUW increases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kurian T, Mathew NM. Natural rubber: production, properties and applications. Biopolym Biomed Environ Appl. 2011;70:403–36.

    Article  Google Scholar 

  2. Phinyocheep P. 3 - Chemical modification of natural rubber (NR) for improved performance. In: Kohjiya S, Ikeda Y, editors. Chemistry, manufacture and applications of natural rubber. Woodhead Publishing; 2014. p. 68–118.

    Chapter  Google Scholar 

  3. Zou Y, Sun Y, Zhang Y, He J, Tang Z, Zhu L, et al. Antioxidative behavior of a novel samarium complex in styrene-butadiene rubber/silica composites. Polym Degrad Stab. 2016;133:201–10.

    Article  CAS  Google Scholar 

  4. Robertson CG, Hardman NJ. Nature of carbon black reinforcement of rubber: perspective on the original polymer nanocomposite. Polymers. 2021;13:538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. El-Sabbagh SH, Ahmed NM, Mahmoud DS, Mohamed WS. Silica and modified silica fume waste (mSF) as reinforcing fillers for rubber industry. Pigm Resin Technol. 2020;50:74–84.

    Article  Google Scholar 

  6. Abraham E, Elbi PA, Deepa B, Jyotishkumar P, Pothen LA, Narine SS, et al. X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polym Degrad Stab. 2012;97:2378–87.

    Article  CAS  Google Scholar 

  7. Daud S, Lik OYH, Azura AR. The effects of nano-cellulose filler on tensile and thermal properties of natural rubber latex films. In: AIP Conference Proceedings. 2020. p. 2267.

  8. Chittella H, Yoon LW, Ramarad S, Lai Z-W. Rubber waste management: a review on methods, mechanism, and prospects. Polym Degrad Stab. 2021;194:109761.

    Article  CAS  Google Scholar 

  9. Roy K, Debnath SC, Bansod ND, Pongwisuthiruchte A, Wasanapiarnpong T, Potiyaraj P. Possible use of gypsum waste from ceramics industry as semi-reinforcing filler in epoxidized natural rubber composites. J Mater Cycl Waste Manag. 2020;22:285–94. https://doi.org/10.1007/s10163-019-00939-w.

    Article  CAS  Google Scholar 

  10. Ren X, Sancaktar E. Use of fly ash as eco-friendly filler in synthetic rubber for tire applications. J Clean Prod. 2019;206:374–82. https://doi.org/10.1016/j.jclepro.2018.09.202.

    Article  CAS  Google Scholar 

  11. Karkalic R, Radulovic J, Jovanovic D. Characteristics of polyurethane and elastomer parts for shoe industry produced by liquid injection molding technology. Vojnoteh Glas. 2017;65:948–67.

    Article  Google Scholar 

  12. Staikos T, Rahimifard S. Post-consumer waste management issues in the footwear industry. Proc Inst Mech Eng Part B J Eng Manuf. 2007;221:363–8.

    Article  Google Scholar 

  13. Kemona A, Piotrowska M. Polyurethane recycling and disposal: methods and prospects. Polymers. 2020;12:1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bashpa P, Bijudas K, Dileep P, Elanthikkal S, Francis T. Reutilization of polyurethane-based shoe sole scrap as a reinforcing filler in natural rubber for the development of high-performance composites. J Elast Plast. 2022. https://doi.org/10.1177/00952443221108514.

    Article  Google Scholar 

  15. Vyazovkin S. Kissinger method in kinetics of materials: things to beware and be aware of. Molecules. 2020;25:2813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang X. Applications of kinetic methods in thermal analysis: a review. Eng Sci. 2021;14:1–13.

    CAS  Google Scholar 

  17. Venkatesh M, Ravi P, Tewari SP. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. J Phys Chem A. 2013;117:10162–9. https://doi.org/10.1021/jp407526r.

    Article  CAS  PubMed  Google Scholar 

  18. Bafna S. On the use of Ozawa/Flynn/Wall method to determine aging activation energy for elastomers. J Elast Plast. 2021;54:56–66. https://doi.org/10.1177/00952443211020330.

    Article  CAS  Google Scholar 

  19. Muraleedharan K, Alikutty P, Abdul Mujeeb VM, Sarada K. Kinetic studies on the thermal dehydration and degradation of Chitosan and Citralidene Chitosan. J Polym Environ. 2015;23:1–10.

    Article  CAS  Google Scholar 

  20. Sujith A, Unnikrishnan G, Radhakrishnan CK, Padmini M. Interaction of silica and carbon black fillers with natural rubber/poly(ethylene-co-vinyl acetate) matrix by swelling studies. Polym Compos. 2007;28:705–12. https://doi.org/10.1002/pc.20340.

    Article  CAS  Google Scholar 

  21. Visakh PM, Thomas S, Oksman K, Mathew AP. Cellulose nanofibres and cellulose nanowhiskers based natural rubber composites: diffusion, sorption, and permeation of aromatic organic solvents. J Appl Polym Sci. 2012;124:1614–23. https://doi.org/10.1002/app.35176.

    Article  CAS  Google Scholar 

  22. Janković B, Mentus S, Jelić D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere. Phys B Condens Matter. 2009;404:2263–9.

    Article  Google Scholar 

  23. Moussout H, Ahlafi H, Aazza M, Bourakhouadar M. Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym Degrad Stab. 2016;130:1–9.

    Article  CAS  Google Scholar 

  24. Motaung TE, Luyt AS, Bondioli F, Messori M, Saladino ML, Spinella A, et al. PMMA-titania nanocomposites: properties and thermal degradation behaviour. Polym Degrad Stab. 2012;97:1325–33.

    Article  CAS  Google Scholar 

  25. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Sect A Phys Chem. 1966;70A:487–523.

    Article  Google Scholar 

  26. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  27. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6. https://doi.org/10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  28. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  29. Budrugeac P, Segal E. On the Li and Tang’s isoconversional method for kinetic analysis of solid-state reactions from thermoanalytical data. J Mater Sci. 2001;36:2707–10.

    Article  CAS  Google Scholar 

  30. Starink MJ, van Mourik P. Cooling and heating rate dependence of precipitation in an Al–Cu alloy. Mater Sci Eng A. 1992;156:183–94.

    Article  Google Scholar 

  31. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  32. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92. https://doi.org/10.1002/app.1961.070051506.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  34. Trovati G, Sanches EA, Neto SC, Mascarenhas YP, Chierice GO. Characterization of polyurethane resins by FTIR, TGA, and XRD. J Appl Polym Sci. 2010;115:263–8. https://doi.org/10.1002/app.31096.

    Article  CAS  Google Scholar 

  35. Intapun J, Rungruang T, Suchat S, Cherdchim B, Hiziroglu S. The Characteristics of natural rubber composites with klason lignin as a green reinforcing filler: thermal stability, mechanical and dynamical properties. Polymers. 2021;13:1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shufen L, Zhi J, Kaijun Y, Shuqin Y, Chow WK. Studies on the thermal behavior of polyurethanes. Polym Plast Technol Eng. 2006;45:95–108. https://doi.org/10.1080/03602550500373634.

    Article  CAS  Google Scholar 

  37. Danielle Galiani P, Antonio Malmonge J, Guenther Soares B, Henrique Capparelli Mattoso L. Studies on thermal–oxidative degradation behaviours of raw natural rubber: PRI and thermogravimetry analysis. Plast Rubber Compos. 2013;42:334–9. https://doi.org/10.1179/1743289811Y.0000000046.

    Article  CAS  Google Scholar 

  38. Li S-D, Kong L, Zhong J-P. Thermal degradation kinetics and morphology of natural rubber/silica nanocomposites. J Nanosci Nanotechnol. 2006;6:541–6.

    Article  CAS  PubMed  Google Scholar 

  39. Li C, Zhong J, Yang L, Li S, Kong L, Hou T. Studies on the properties and the thermal decomposition kinetics of natural rubber prepared with calcium chloride. e-Polymers. 2010;10:72. https://doi.org/10.1515/epoly.2010.10.1.789.

    Article  Google Scholar 

  40. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32. https://doi.org/10.1002/marc.200600404.

    Article  CAS  Google Scholar 

  41. Rajeshwari PM, Dey TK. Thermogravimetric kinetics of degradation of HDPE based MWCNTs reinforced composites. Int J Plast Technol. 2014;18:294–320.

    Article  CAS  Google Scholar 

  42. Balan AK, Sreejith MP, Shaniba V, Jinitha T V, Subair N, Purushothaman E. Transport behavior of aromatic hydrocarbons through coconut shell powder filled thermoplastic polyurethane/natural rubber blend-composites. In: AIP Conference Proceedings; 2017. p. 20046. https://doi.org/10.1063/1.4984193

  43. Maria H, Lyczko N, Nzihou A, Mathew C, George S, Joseph K, et al. Transport of organic solvents through natural rubber/nitrile rubber/organically modified montmorillonite nanocomposites. J Mater Sci. 2013;48:5373–86.

    Article  CAS  Google Scholar 

  44. Mathew L, Joseph KU, Joseph R. Swelling behaviour of isora/natural rubber composites in oils used in automobiles. Bull Mater Sci. 2006;29:91–9. https://doi.org/10.1007/BF02709362.

    Article  CAS  Google Scholar 

  45. Al Minnath M, Unnikrishnan G, Purushothaman E. Transport studies of thermoplastic polyurethane/natural rubber (TPU/NR) blends. J Membr Sci. 2011;379:361–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge KSCSTE and DBT-STAR for the instrumentation facility at Department of Chemistry, St. Joseph's College (Autonomous) Devagiri, Kozhikode, affiliated to University of Calicut and J. J. Murphy Research Centre, Rubber Park India (P) Ltd., Valayanchirangara for thermal analysis and mixing, respectively. This reported work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding author

Correspondence to Tania Francis.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

St. Joseph’s College and N. S. S. College Affiliated to University of Calicut.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashpa, P., Stephy, A., Bijudas, K. et al. Thermal degradation kinetics and solvent transport behavior of natural rubber composites filled with polyurethane rich shoe sole waste from footwear industry. J Therm Anal Calorim 148, 10871–10883 (2023). https://doi.org/10.1007/s10973-023-12425-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12425-5

Keywords

Navigation