Skip to main content
Log in

Correlation between heat of fusion and change of volume at melting by volume-dependent heat capacity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat capacity is a key subject in condensed matter physics due to its scientific and technological importance. Previous studies show that the change of heat dQ is dependent on both of the macroscopic physical variables in general solids: dT and dlnV. In this paper, we analyze the thermal parameters during the process of melting in a series of reference materials. The behavior of the heat of fusion and the volume change at melting in the reference materials can be explained by the new heat capacity model in solids. The change of volume at melting can be quantitatively gotten by the heat of fusion. The results are helpful to further understand the volume-dependent heat capacity in the model and the melting process in general materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Einstein A. The Planck theory of radiation and the theory of specific heat. Ann Phys Berlin. 1907;327:180–90. https://doi.org/10.1002/andp.19063270110.

    Article  Google Scholar 

  2. Debye P. The theory of specific warmth. Ann Phys Berlin. 1912;344:789–839. https://doi.org/10.1002/andp.19123441404.

    Article  Google Scholar 

  3. Drebushchak VA. Thermal expansion of solids: review on theories. J Therm Analy Calorim. 2020;142(2):1097–113. https://doi.org/10.1007/s10973-020-09370-y.

    Article  CAS  Google Scholar 

  4. Tang MB, Liu XC, Zhang MH, Pan XH. Scaling behavior of non-volume-dependent heat capacity in solids. Solid State Commun. 2022;341:114581. https://doi.org/10.1016/j.ssc.2021.114581.

    Article  CAS  Google Scholar 

  5. Tang MB, Liu XC, Zhang MH, Pan XH, Wen HQ. Model of heat capacity in volume dimension. J Phys Chem A. 2020;124(29):6119–23. https://doi.org/10.1021/acs.jpca.0c05729.

    Article  CAS  PubMed  Google Scholar 

  6. Arblaster JW. Thermodynamic properties of beryllium. J Phase Equilibria Diffus. 2016;37(5):581–91. https://doi.org/10.1007/s11669-016-0488-5.

    Article  CAS  Google Scholar 

  7. Nernst W. Analysis of the specific temperature of low temperatures. II. Sitzungsberichte K Preuss Akad Wiss. 1910:262–82.

  8. Kaptay G. Approximated equations for molar volumes of pure solid fcc metals and their liquids from zero Kelvin to above their melting points at standard pressure. J Mater Sci. 2015;50(2):678–87. https://doi.org/10.1007/s10853-014-8627-z.

    Article  CAS  Google Scholar 

  9. The periodic table of the elements. https://www.webelements.com

  10. Tang MB, Pan XH, Zhang MH, Wen HQ. Scaling behavior between heat capacity and thermal expansion in solids. Chin Phys Lett. 2021;38(2):026501. https://doi.org/10.1088/0256-307X/38/2/026501.

    Article  CAS  Google Scholar 

  11. Hixson RS, Winkler MA. Thermophysical properties of solid and liquid tungsten. Int J Thermophys. 1990;11(4):709–18. https://doi.org/10.1007/bf01184339.

    Article  CAS  Google Scholar 

  12. McClure JL, Cezairliyan A. Measurement of the heat of fusion of tungsten by a microsecond-resolution transient technique. Int J Thermophys. 1993;14(3):449–55. https://doi.org/10.1007/bf00566044.

    Article  CAS  Google Scholar 

  13. Tolias P, Team EUM. Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications. Nucl Mater Energy. 2017;13:42–57. https://doi.org/10.1016/j.nme.2017.08.002.

    Article  Google Scholar 

  14. McClure JL, Cezairliyan A. Measurement of the heat of fusion of tantalum by a microsecond-resolution transient technique. Int J Thermophys. 1994;15(3):505–11. https://doi.org/10.1007/bf01563710.

    Article  CAS  Google Scholar 

  15. Jager H, Neff W, Pottlacher G. Improved thermophysical measurements on solid and liquid tantalum. Int J Thermophys. 1992;13(1):83–93. https://doi.org/10.1007/bf00503358.

    Article  Google Scholar 

  16. Garland CW. Generalized Pippard equations. J Chem Phys. 1964;41(4):1005–2000. https://doi.org/10.1063/1.1725997.

    Article  CAS  Google Scholar 

  17. Hixson RS, Winkler MA. Thermophysical properties of molybdenum and rhenium. Int J Thermophys. 1992;13(3):477–87. https://doi.org/10.1007/bf00503884.

    Article  CAS  Google Scholar 

  18. Paradis PF, Ishikawa T, Yoda S. Noncontact measurements of thermophysical properties of molybdenum at high temperatures. Int J Thermophys. 2002;23(2):555–69. https://doi.org/10.1023/a:1015169721771.

    Article  CAS  Google Scholar 

  19. Desai PD. Thermodynamic properties of manganese and molybdenum. J Phys Chem Ref Data. 1987;16(1):91–108. https://doi.org/10.1063/1.555794.

    Article  CAS  Google Scholar 

  20. Mehmood S, Klotz UE, Pottlacher G. Thermophysical properties of platinum–copper alloys. Metall Mater Trans A Phys Metall Mater Sci. 2012;43A(13):5029–37. https://doi.org/10.1007/s11661-012-1319-x.

    Article  CAS  Google Scholar 

  21. Ubbelohde AR. Melting and crystal structure. Q Rev. 1950;4(4):356–81. https://doi.org/10.1039/qr9500400356.

    Article  CAS  Google Scholar 

  22. Hixson RS, Winkler MA. Thermophysical properties of liquid platinum. Int J Thermophys. 1993;14(3):409–16. https://doi.org/10.1007/bf00566040.

    Article  CAS  Google Scholar 

  23. Boivineau M, Arles L, Vermeulen JM, Thevenin T. Thermophysical properties of solid and liquid beryllium. Int J Thermophys. 1993;14(3):427–39. https://doi.org/10.1007/bf00566042.

    Article  CAS  Google Scholar 

  24. Kubaschewski O. The change of entropy, volume and binding state of the elements on melting. Trans Faraday Soc. 1949;45(10):931–40. https://doi.org/10.1039/tf9494500931.

    Article  CAS  Google Scholar 

  25. Wray PJ. Volume change accompanying solidification. Metall Trans. 1974;5(12):2602–3. https://doi.org/10.1007/bf02643883.

    Article  CAS  Google Scholar 

  26. Levitt LS, Hsieh ET. Quasi-solid liquid lattice and volume change on melting of a solid - modified significant structure theory of liquids. 1. J Am Chem Soc. 1979;101(16):4664–8. https://doi.org/10.1021/ja00510a036.

    Article  CAS  Google Scholar 

  27. Richards JW. Relations between the melting points and the latent heats of fusion of the metals. J Frankl Inst. 1897;143(5):379–83. https://doi.org/10.1016/S0016-0032(97)90124-1.

    Article  Google Scholar 

  28. Badenhorst H, Bohmer T. Enthalpy of fusion prediction for the economic optimisation of salt based latent heat thermal energy stores. J Energy Storage. 2018;20:459–72. https://doi.org/10.1016/j.est.2018.10.020.

    Article  Google Scholar 

  29. Chuvil’deev VN, Semenycheva AV. Model for the calculation of the volume change on melting of metals. Inorg Mater. 2017;53(7):770–3. https://doi.org/10.1134/s0020168517070020.

    Article  CAS  Google Scholar 

  30. Kleinert H, Jiang Y. Defect melting models for cubic lattices and universal laws for melting temperatures. Phys Lett A. 2003;313(1–2):152–7. https://doi.org/10.1016/s0375-9601(03)00730-8.

    Article  CAS  Google Scholar 

  31. Pippard AB. Thermodynamic relations applicable near a lambda-transition. Philos Mag. 1956;1(5):473–6. https://doi.org/10.1080/14786435608238127.

    Article  CAS  Google Scholar 

  32. Lindemann FA. The calculation of molecular natural frequencies. Phys Z. 1910;11:609–12.

    CAS  Google Scholar 

  33. Eyring H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J Chem Phys. 1936;4(4):283–91. https://doi.org/10.1063/1.1749836.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Liu acknowledges the financial support of the National Key Research and Development Program of China (2021YFA0716304) and Shanghai Science and Technology Innovation Action Plan Program (20511107404). Zhang acknowledges the financial support of Youth Innovation Promotion Association Chinese Academy of Sciences (2020256), Science and Technology Committee of Shanghai (20QA1410300, 22511100300), the Space Utilization System of China Manned Space Engineering (KJZ-YY-NCL07), Innovation Fund of Shanghai Institute of Ceramics Chinese Academy of Sciences (E19ZC3130G), and Science Research Fund of Shanghai Institute of Ceramics Chinese Academy of Sciences (E19ZC1990G). Pan acknowledges the financial support of Science and Technology Committee of Shanghai (19DZ1100703).

Author information

Authors and Affiliations

Authors

Contributions

Data collection was performed by MT. Data analysis was performed by MT, XL, MZ, and XP. The manuscript was written by MT. All authors discussed the results.

Corresponding author

Correspondence to M. B. Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M.B., Liu, X.C., Zhang, M.H. et al. Correlation between heat of fusion and change of volume at melting by volume-dependent heat capacity. J Therm Anal Calorim 148, 11167–11172 (2023). https://doi.org/10.1007/s10973-023-12424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12424-6

Keywords

Navigation