Skip to main content
Log in

Numerical analysis of a nanofluid behavior in an expanded curved duct using the two-phase Buongiorno model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In various industrial applications, especially those that focus on heat transfer, curved ducts present an interesting equipment. The flow behavior inside curved ducts is more complex compared to straight ducts, particularly in the presence of nanofluids. Hence, the present paper reports a numerical investigation of a nanofluid two-phase flow according to the Buongiorno model in a curved duct with abruptly expanded cross section. It deals with a toroidal duct with a circular cross-section abruptly expanded through which an Alumina-water nanofluid flows. The nanofluid penetrates the duct with a constant initial velocity at a cold constant temperature. Moreover, the lateral surface of the expanded part of the duct is maintained at a hot temperature, however, the rest of the duct boundaries are assumed to be adiabatic. The aim of the present study is to visualize the impact of the phenomenon of inertia (10 ⩽ Re ⩽ 200), mass diffusion (0.1 ⩽ Le ⩽ 100) and alumina nanoparticles concentration (0 ⩽ φ0 ⩽ 0.1)  on the hydrodynamic, thermal and mass behavior of the nanofluid inside the expanded curved ducts under Brownian and thermophoretic diffusions. The nanofluid flow is governed by the mathematical model of Buongiorno including the mass, momentum, energy and nanoparticles equations and solved by the Galerkin finite element method. The numerical results have indicated that, in addition to the presence of Dean’s vortices, the enlarged configuration of the current duct leads to the emergence of vortices resulting from flow reattachment. Moreover, the heat transfer rate increases with higher Reynolds numbers. Furthermore, the addition of alumina nanoparticles enhances the heat transfer with a percentage of 15% compared to pure water. Additionally, there is a relative decrease in the heat transfer rate due to nanoparticles’ thermophoretic migration. On the other hand, the increase in the Lewis number does not significantly influence this heat transfer rate, although it does promote a more homogeneous distribution of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

a 1 :

Radius of restricted duct/m

a 2 :

Radius of expanded duct/m

Cp:

Specific heat/J kg1 K1

D :

Diameter of restricted duct/m

D B :

Brownian motion coefficient/m2 s1

De:

Dean number/–

d p :

Nanoparticles diameter/m

D T :

Thermophoresis coefficient/m2 s1

k :

Thermal conductivity/W m1 K1

K B :

Boltzmann coefficient/J K1

Le:

Lewis number/–

N B :

Brownian motion parameter/–

N T :

Thermophoresis parameter/–

Nu:

Nusselt number/–

P :

Dimensionless pressure/–

p :

Pressure/Pa

Pr:

Prandtl number/–

q w :

Heat flux/W/m2 K1

R :

Dimensionless radial coordinate/–

R c :

Average curvature radius/m

Re:

Reynolds number/–

Ri:

Richardson number/–

S :

Lateral area of expanded duct/m2

t :

Time/s

T :

Temperature/K

u 0 :

Inlet velocity/m s1

u r :

Radial velocity/ m s1

U R :

Dimensionless radial velocity/–

u z :

Vertical velocity/ m s1

U Z :

Dimensionless vertical velocity/–

u θ :

Axial velocity/m s1

U θ :

Dimensionless axial velocity/–

V :

Magnitude velocity/m s1

x :

x-Cartesian coordinate/m

y :

y-Cartesian coordinate/m

Z :

Dimensionless vertical coordinate/–

z :

Vertical coordinate/m

α :

Thermal diffusivity/m2 s1

β :

Thermal expansion coefficient/K1

Θ:

Dimensionless temperature/–

θ :

Axial coordinate/rd

μ :

Viscosity/Pa s

ρ :

Density/kg m3

τ :

Dimensionless time/–

φ :

Volume fraction or concentration/–

φ 0 :

Mean concentration/–

Φ:

Dimensionless concentration/–

ϕ :

Cross section angle coordinate/rd

Ω:

Computational domain

f:

Base fluid

p:

Nanoparticles

nf:

Nanofluid

h:

Hot

c:

Cold

ave:

Average

References

  1. Yasuo M, Wataru N. Study on forced convective heat transfer in curved pipes: (1st report, laminar region). Int J Heat Mass Transf. 1965;8(1):67–82.

    Google Scholar 

  2. Dean WR. XVI. Note on the motion of fluid in a curved pipe. Lond Edinb Dublin Philos Mag J Sci. 1927;4(20):208–23.

    Google Scholar 

  3. Dean WR. Fluid motion in a curved channel. Proc R Soc Lond Ser A Contain Pap Math Phys Character. 1928;121(787):402–20.

    Google Scholar 

  4. Dean WR, Hurst JM. Note on the motion of fluid in a curved pipe. Mathematika. 1959;6(1):77–85.

    Google Scholar 

  5. Williams GS, Hubbell CW, Fenkell GH. Experiments at detroit, Mich., on the effect of curvature upon the flow of water in pipes. Trans Am Soc Civ Eng. 1902;47(1):1–196.

    Google Scholar 

  6. Grindley JH, Gibson AH. On the frictional resistances to the flow of air through a pipe. Proc R Soc Lond Ser A Contain Pap Math Phys Character. 1908;80(536):114–39.

    Google Scholar 

  7. Eustice J. Flow of water in curved pipes. Proceed R Soc Lond Ser A Contain Pap Math Phys Character. 1910;84(568):107–18.

    Google Scholar 

  8. Eustice J. Experiments on streamline motion in curved pipes. Proc R Soc Lond Ser A Contain Pap Math Phys Character. 1911;85(576):119–31.

    CAS  Google Scholar 

  9. Ito H. Theory on laminar flow through curved pipes of elliptic and rectangular cross-section. Rep Inst High Speed Mech Tohoku Univ Sendai Jpn. 1951;1:1–16.

    Google Scholar 

  10. Stonemetz RE. Liquid cavitation studies in circular pipe bends. Washington, D.C.: National Aeronautics and Space Administration; 1965.

    Google Scholar 

  11. McConalogue DJ, Srivastava RS. Motion of a fluid in a curved tube. Proc R Soc Lond Ser A Math Phys Sci. 1968;307(1488):37–53.

    Google Scholar 

  12. Mullinix BF. Streamline motion of a viscous, incompressible fluid in a curved pipe with an elliptical cross section. Army missile command redstone arsenal al systems research directorate 1969;0129.

  13. Sugiyama S, Hayashi T, Yamazaki K. Flow characteristics in the curved rectangular channels: visualization of secondary flow. Bull JSME. 1983;26(216):964–9.

    Google Scholar 

  14. Hille P, Vehrenkamp R, Schulz-Dubois EO. The development and structure of primary and secondary flow in a curved square duct. J Fluid Mech. 1985;151:219–41.

    Google Scholar 

  15. Bovendeerd PHM, Van Steenhoven AA, Van de Vosse FN, Vossers G. Steady entry flow in a curved pipe. J Fluid Mech. 1987;177:233–46.

    CAS  Google Scholar 

  16. Bara B, Nandakumar K, Masliyah J. An experimental and numerical study of the Dean problem: flow development towards two-dimensional multiple solutions. J Fluid Mech. 1992;244:339–76.

    CAS  Google Scholar 

  17. Li Y, Wang X, Zhou B, Yuan S, Tan SK. Dean instability and secondary flow structure in curved rectangular ducts. Int J Heat Fluid Flow. 2017;68:189–202.

    Google Scholar 

  18. Yee G, Chilukuri R, Humphrey JAC. Developing flow and heat transfer in strongly curved ducts of rectangular cross section. 1980; 285–291.

  19. Wang L, Cheng KC. Flow transitions and combined free and forced convective heat transfer in rotating curved channels: the case of positive rotation. Phys Fluids. 1996;8(6):1553–73.

    CAS  Google Scholar 

  20. Gyves TW, Irvine TF Jr. Laminar conjugated forced convection heat transfer in curved rectangular channels. Int J Heat Mass Transf. 2000;43(21):3953–64.

    CAS  Google Scholar 

  21. Choi HK, Park SO. Mixed convection flow in curved annular ducts. Int J Heat Mass Transf. 1994;37(17):2761–9.

    Google Scholar 

  22. Yanase SRNM, Mondal RN, Kaga Y. Numerical study of non-isothermal flow with convective heat transfer in a curved rectangular duct. Int J Therm Sci. 2005;44(11):1047–60.

    CAS  Google Scholar 

  23. Mondal RN, Kaga Y, Hyakutake T, Yanase S. Effects of curvature and convective heat transfer in curved square duct flows. J Fluids Eng. 2006;128:1013–22.

    Google Scholar 

  24. Chandratilleke TT, Nadim N, Narayanaswamy R. Vortex structure-based analysis of laminar flow behaviour and thermal characteristics in curved ducts. Int J Therm Sci. 2012;59:75–86.

    Google Scholar 

  25. Mondal RN, Islam MS, Uddin MK. Unsteady solutions with convective heat transfer through a curved duct flow. Procedia Eng. 2013;56:141–8.

    Google Scholar 

  26. Ahuja A. Augmentation of heat transport in laminar flow of polystyrene suspension I. Experiments and results. J Appl Phys. 1975;46:3408–16.

    CAS  Google Scholar 

  27. Hetsroni G, Rozenblit R. Heat transfer to a liquid-solid mixture in a flume. Int J Multiphase Flow. 1994;20:671–89.

    CAS  Google Scholar 

  28. Perarasu V, Arivazhagan M, Sivashanmugam P. Experimental and CFD heat transfer studies of Al2O3-water nanofluid in a coiled agitated vessel equipped with propeller. Chin J Chem Eng. 2013;21(11):1232–43.

    CAS  Google Scholar 

  29. Choi S, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: 309 Siginer DA, Wang HP, editors. Developments and applications of non-Newtonian 310 flows, vol 231, no 66. 1995. p. 99–105.

  30. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2003;43(19):3701–7.

    Google Scholar 

  31. Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass Transf. 2008;35(5):657–65.

    CAS  Google Scholar 

  32. Shang D-Y, Zhong LC. Heat transfer due to laminar natural convection of nanofluids: theory and calculation. Gewerbestrasse, Switzerland: Springer; 2019.

    Google Scholar 

  33. Bianco V, Manca O, Nardini S, Vafai K. Heat transfer enhancement with nanofluids. 1st ed. New York: CRC Press Taylor & Francis Group; 2015.

    Google Scholar 

  34. Hayat T, Muhammad K, Alsaedi A, Asghar S. Thermodynamics by melting in flow of an Oldroyd-B material. J Braz Soc Mech Sci Eng. 2018;40:1–11.

    Google Scholar 

  35. Muhammad K, Hayat T, Alsaedi A. Heat transfer analysis in slip flow of hybrid nanomaterial (Ethylene Glycol+ Ag+ CuO) via thermal radiation and Newtonian heating. Waves Random Complex Media 2021; 1–21.

  36. Hayat T, Muhammad K, Alsaedi A. Numerical study of melting heat transfer in stagnation-point flow of hybrid nanomaterial (MWCNTs+ Ag+ kerosene oil). Int J Numer Meth Heat Fluid Flow. 2021;31(8):2580–98.

    Google Scholar 

  37. Hayat T, Muhammad K, Alsaedi A. Melting effect in MHD stagnation point flow of Jeffrey nanomaterial. Phys Scr. 2019;94(11):115702.

    CAS  Google Scholar 

  38. Pordanjani A, Vahedi S, Rikhtegar F, Wongwises S. Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J Therm Anal Calorim. 2018;135:1031–45.

    Google Scholar 

  39. Hussain S, Ahmed SE. Unsteady MHD forced convection over a backward facing step including a rotating cylinder utilizing Fe3O4-water ferrofluid. J Magn Magn Mater. 2019;484:356–66.

    CAS  Google Scholar 

  40. Djamila D, Bouzit M, Bouzit F. Effect of the inclination angle of finned cylinder over a BFS on the MHD behavior in the presence of a nanofluid. Metall Mater Eng. 2022;28(2):203–21.

    Google Scholar 

  41. Toumi M, Bouzit M, Bouzit F, Mokhefi A. MHD forced convection using ferrofluid over a backward facing step containing a finned cylinder. Acta Mech Autom. 2022;16(1):70–81.

    Google Scholar 

  42. Aminian E, Moghadasi H, Saffari H. Magnetic field effects on forced convection flow of a hybrid nanofluid in a cylinder filled with porous media: a numerical study. J Therm Anal Calorim. 2020;141:2019–31.

    CAS  Google Scholar 

  43. Liu X, et al. Numerical investigation of nanofluid laminar forced convection heat transfer between two horizontal concentric cylinders in the presence of porous medium. J Therm Anal Calorim. 2020;141:2095–108.

    CAS  Google Scholar 

  44. Mokhefi A, Bouanini M, Elmir M, Guettaf Y, Spiteri P. 2022 Numerical investigation of mixed convection in an anchor-stirred tank filled with an Al2O3-water nanofluid. Chem Pap. 2022;76(2):967–85.

    CAS  Google Scholar 

  45. Mokhefi A, Bouanini M, Elmir M, Spitéri P. Effect of an anchor geometry on the hydrodynamic characteristics of a nanofluid in agitated tank. In: Defect and diffusion forum, vol. 409. Bäch: Trans Tech Publications Ltd.; 2021. p. 179–93.

    Google Scholar 

  46. Mokhefi A, Bouanini M, Elmir M, Spitéri P. Effect of the wavy tank wall on the characteristics of mechanical agitation in the presence of a Al2O3-water nanofluid. Metall Mater Eng. 2021;27(3):301–20.

    Google Scholar 

  47. Akbarinia A, Behzadmehr A. Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes. Appl Therm Eng. 2007;27(8–9):1327–37.

    CAS  Google Scholar 

  48. Choi J, Zhang Y. Numerical simulation of laminar forced convection heat transfer of Al2O3–water nanofluid in a pipe with return bend. Int J Therm Sci. 2012;55:90–102.

    CAS  Google Scholar 

  49. Ajeel RK, Sopian K, Zulkifli R, Fayyadh SN, Hilo AK. Assessment and analysis of binary hybrid nanofluid impact on new configurations for curved-corrugated channel. Adv Powder Technol. 2021;32(10):3869–84.

    CAS  Google Scholar 

  50. Liu F, Zhang D, Cai Y, Qiu Z, Zhu Q, Zhao J, Tian H. Multiplicity of forced convective heat transfer of nanofluids in curved ducts. Int J Heat Mass Transf. 2019;129:534–46.

    CAS  Google Scholar 

  51. Moghadasi H, Aminian E, Saffari H, Mahjoorghani M, Emamifar A. Numerical analysis on laminar forced convection improvement of hybrid nanofluid within a U-bend pipe in porous media. Int J Mech Sci. 2020;179:105659.

    Google Scholar 

  52. Akbarinia A, Laur R. Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two-phase approach. Int J Heat Fluid Flow. 2009;30(4):706–14.

    CAS  Google Scholar 

  53. Ghaffari O, Behzadmehr A, Ajam H. Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach. Int Commun Heat Mass Transfer. 2010;37(10):1551–8.

    CAS  Google Scholar 

  54. Akbari OA, Safaei MR, Goodarzi M, Akbar NS, Zarringhalam M, Shabani GAS, Dahari M. A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube. Adv Powder Technol. 2016;27(5):2175–85.

    CAS  Google Scholar 

  55. Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128:240–50.

    Google Scholar 

  56. Fard MH, Esfahany MN, Talaie MR. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. Int Commun Heat Mass Transf. 2010;37(1):91–7.

    Google Scholar 

  57. Hayat T, Farooq S, Alsaedi A. 2017 Mixed convection peristaltic motion of copper-water nanomaterial with velocity slip effects in a curved channel. Comput Methods Programs Biomed. 2017;142:117–28.

    CAS  PubMed  Google Scholar 

  58. Malvandi A, Ganji D. Mixed convective heat transfer of water/alumina nanofluid inside a vertical microchannel. Powder Technol. 2014;263:37–44.

    CAS  Google Scholar 

  59. di Rossi SE, Impiombato AN, Mokhefi A, Biserni C. Theoretical and numerical study on Buongiorno’s model with a couette flow of a nanofluid in a channel with an embedded cavity. Appl Sci. 2022;12(15):7751.

    Google Scholar 

  60. Benygzer C, Bouzit M, Mokhefi A, Khelif F-Z. Unsteady natural convection in a porous square cavity saturated by nanofluid using buongiorno model: variable permeability effect on homogeneous porous medium. CFD Lett. 2022;14(7):42–61.

    Google Scholar 

  61. Brinkman H. 1952The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–81.

    CAS  Google Scholar 

  62. Maxwell J. A Treatise on Electricity and Magnetism. 1st ed. Cambridge: Oxford University Press; 1881.

    Google Scholar 

  63. Mokeddem M, Laidoudi H, Makinde OD, Bouzit M. 3D Simulation of incompressible poiseuille flow through 180 curved duct of square cross-section under effect of thermal buoyancy. Period Polytech Mech Eng. 2019;63(4):257–69.

    Google Scholar 

  64. Izadi M, Sinaei S, Mehryan SAM, Oztop HF, Abu-Hamdeh N. 2018 Natural convection of a nanofluid between two eccentric cylinders saturated by porous material: Buongiorno’s two-phase model. Int J Heat Mass Transf. 2018;127:67–75.

    CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

DD performed the simulation and showed the results and interpretation, MB proposed the idea of the paper and helped in the interpretation, AM detailed the mathematical formulation and helped in the analyze of the results, FB contributed in the redaction.

Corresponding author

Correspondence to Djamila Derbal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbal, D., Bouzit, M., Mokhefi, A. et al. Numerical analysis of a nanofluid behavior in an expanded curved duct using the two-phase Buongiorno model. J Therm Anal Calorim 148, 11131–11154 (2023). https://doi.org/10.1007/s10973-023-12423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12423-7

Keywords

Navigation