Skip to main content
Log in

Fragmentation and solidification of fuel–coolant interaction of columnar molten iron and water

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The fuel–coolant interaction process is a common accident in metal smelting industry. The interaction of columnar molten iron with water was experimentally investigated with the influence of mass (100–600 g) and dropping height (20–150 cm) of columnar molten iron, and depth of cooling water (2–14 cm). Results show that a steam cavity incorporating a mixture of water vapor, cooling water, air and molten iron is formed during the interaction. The solidified products are divided into three patterns: non-fragmentation, partial fragmentation and complete fragmentation, and the formation mechanisms of solidified products are analyzed. The behaviors of steam explosion and fragmentation of molten column are affected by the continuity of columnar molten iron in the falling. The pressure peak value and mass percentage of granular products increase initially and decrease afterward with the critical dropping height of 80 cm. The degree of fragmentation of molten iron is decreased by the water depth. The fragmentation behavior and percentage of solidified product are interpreted according to the thermal effect and dynamic effect involving the molten iron–water interaction process. The findings and conclusions provide guiding information for accident prevention and safety evaluation in metal smelting industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singh G, Yunus M, Srivastava KP. Thermal explosion of nitrophenates of transition metals. J Therm Anal. 1993;39(2):135–45. https://doi.org/10.1007/BF01981727.

    Article  CAS  Google Scholar 

  2. Zghal I, Farjas J, Camps J, Sánchez-Rodríguez D, Dammak M, Roura-Grabulosa P. Use of thermal analysis to predict the conditions for thermal explosion to occur: application to a Ce triethanolamine complex. J Therm Anal Calorim. 2020;142(5):2087–94. https://doi.org/10.1007/s10973-020-10262-4.

    Article  CAS  Google Scholar 

  3. Wang W, Wu Z, Li B, Sundén B. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer. J Therm Anal Calorim. 2019;136(3):1037–51. https://doi.org/10.1007/s10973-018-7765-y.

    Article  CAS  Google Scholar 

  4. Zuo Z, Yu Q, Liu S, Xie H, Duan W, Liu J, et al. Thermodynamic analysis of thermal energy recovery and direct reduction (TER–DR) system for molten copper slag. J Therm Anal Calorim. 2018;131(2):1691–8. https://doi.org/10.1007/s10973-017-6701-x.

    Article  CAS  Google Scholar 

  5. Zhou Y, Lin M, Zhong M, Yan X, Yang Y. Molten metal and water direct contact interaction research-I. Photographic experiment study. Ann Nucl Energy. 2014;70:248–55. https://doi.org/10.1016/j.anucene.2013.11.002.

    Article  CAS  Google Scholar 

  6. Lin M, Zhou Y, Zhong M, Yan X, Yang Y. Molten metal and water direct contact interaction research-II. Numer Anal Ann Nucl Energy. 2014;70:256–65. https://doi.org/10.1016/j.anucene.2013.11.005.

    Article  CAS  Google Scholar 

  7. Zhou Y, Zhang Z, Lin M, Minghao Y, Xiao Y. Numerical simulation of fragmentation of melt drop triggered by external pressure pulse in vapor explosions. Ann Nucl Energy. 2013;57:92–9. https://doi.org/10.1016/j.anucene.2013.01.045.

    Article  CAS  Google Scholar 

  8. Furuya M, Arai T. Effect of surface property of molten metal pools on triggering of vapor explosions in water droplet impingement. Int J Heat Mass Transf. 2008;51(17–18):4439–46. https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.025.

    Article  Google Scholar 

  9. Buchanan DJ, Dullforce TA. Mechanism for vapour explosions. Nature. 1973;245(5419):32–4. https://doi.org/10.1038/245032a0.

    Article  CAS  Google Scholar 

  10. Sa R, Takahashi M, Moriyama K. Study on fragmentation behavior of liquid lead alloy droplet in water. Prog Nucl Energy. 2011;53(7):895–901. https://doi.org/10.1016/j.pnucene.2011.05.003.

    Article  CAS  Google Scholar 

  11. Cheng H, Zhao J, Wang J. Experimental investigation on the characteristics of melt jet breakup in water: the importance of surface tension and Rayleigh–Plateau instability. Int J Heat Mass Transf. 2019;132:388–93. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.026.

    Article  CAS  Google Scholar 

  12. Nelson LS. Steam explosions of single drops of pure and alloyed molten aluminum. Nucl Eng Des. 1995;155(1):413–25. https://doi.org/10.1016/0029-5493(94)00886-4.

    Article  CAS  Google Scholar 

  13. Nelson LS, Duda PM. Steam explosions of molten iron oxide drops: easier initiation at small pressurizations. Nature. 1982;296(5860):844–6. https://doi.org/10.1038/296844a0.

    Article  CAS  Google Scholar 

  14. Haraldsson HO, Li HX, Dinh TN. Hydrodynamic fragmentation of a molten-metal jet in water: effect of melt solidification and coolant voiding. Trans Am Nucl Soc. 1997;77:432–3.

    Google Scholar 

  15. Abe Y, Kizu T, Arai T, Nariai H, Chitose K, Koyama K. Study on thermal-hydraulic behavior during molten material and coolant interaction. Nucl Eng Des. 2004;230(1):277–91. https://doi.org/10.1016/j.nucengdes.2003.11.032.

    Article  CAS  Google Scholar 

  16. Farahani SD, Farahani AD, Hajian E, Öztop HF. Control of PCM melting process in an annular space via continuous or discontinuous fin and non-uniform magnetic field. J Energy Storage. 2022;55:105410. https://doi.org/10.1016/j.est.2022.105410.

    Article  Google Scholar 

  17. Selimefendigil F, Öztop HF. Natural convection and melting of NEPCM in a corrugated cavity under the effect of magnetic field. J Therm Anal Calorim. 2020;140(3):1427–42. https://doi.org/10.1007/s10973-019-08667-x.

    Article  CAS  Google Scholar 

  18. Rostami S, Afrand M, Shahsavar A, Sheikholeslami M, Kalbasi R, Aghakhani S, et al. A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage. Energy. 2020;211:118698. https://doi.org/10.1016/j.energy.2020.118698.

    Article  CAS  Google Scholar 

  19. Kolev NI. Fragmentation and coalescence dynamics in multiphase flows. Exp Therm Fluid Sci. 1993;6(3):211–51. https://doi.org/10.1016/0894-1777(93)90065-Q.

    Article  CAS  Google Scholar 

  20. Ohtake H, Koizumi Y. Study on propagative collapse of a vapor film in film boiling (mechanism of vapor-film collapse at wall temperature above the thermodynamic limit of liquid superheat). Int J Heat Mass Transf. 2004;47(8):1965–77. https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.020.

    Article  CAS  Google Scholar 

  21. Drazin PG. Kelvin–Helmholtz instability of finite amplitude. J Fluid Mech. 2006;42(2):321–35. https://doi.org/10.1017/S0022112070001295.

    Article  Google Scholar 

  22. Wang SK, Blomquist CA, Spencer BW Modeling of thermal and hydrodynamic aspects of molten jet/water interactions. ASME/AIChE National Heat Transfer Conference. Philadelphia: Argonne National Laboratory; 1989

  23. Corradini ML. Phenomenological modeling of the triggering phase of small-scale steam explosion experiments. Nucl Sci Eng. 1981;78(2):154–70. https://doi.org/10.13182/NSE81-A20101.

    Article  CAS  Google Scholar 

  24. Ogura T, Matsumoto T, Miwa S, Hibiki T, Mori M. Experimental study on molten metal spreading and deposition behaviors on wet surface. Prog Nucl Energy. 2018;106:72–8. https://doi.org/10.1016/j.pnucene.2018.03.001.

    Article  CAS  Google Scholar 

  25. Żyszkowski W. Thermal interaction of molten copper with water. Int J Heat Mass Transf. 1975;18(2):271–87. https://doi.org/10.1016/0017-9310(75)90159-3.

    Article  Google Scholar 

  26. Żyszkowski W. On the transplosion phenomenon and the leidenfrost temperature for the molten copper-water thermal interaction. Int J Heat Mass Transf. 1976;19(6):625–33. https://doi.org/10.1016/0017-9310(76)90045-4.

    Article  Google Scholar 

  27. Żyszkowski W. Experimental investigation of fuel-coolant interaction. Nucl Technol. 1977;33(1):40–59. https://doi.org/10.13182/NT77-A31762.

    Article  Google Scholar 

  28. Brandes EA, Brook GB. Smithells metals reference book. 7th ed. Oxford: Butterworth-Heinemann; 1992.

    Google Scholar 

  29. Chen S-N, Sun J-H, Chu G-Q. Small scale experiments on boiling liquid expanding vapor explosions: vessel over-pressure. J Loss Prev Process Ind. 2007;20(1):45–51. https://doi.org/10.1016/j.jlp.2006.09.002.

    Article  CAS  Google Scholar 

  30. Huhtiniemi I, Magallon D. Insight into steam explosions with corium melts in KROTOS. Nucl Eng Des. 2001;204(1):391–400. https://doi.org/10.1016/S0029-5493(00)00319-8.

    Article  CAS  Google Scholar 

  31. Manickam L. An experimental study on melt fragmentation, oxidation and steam explosion during fuel coolant interactions [Doctoral thesis, comprehensive summary]. Stockholm: KTH Royal Institute of Technology; 2018.

  32. Fauske HK, Koyama K, Kubo S. Assessment of the FBR core disruptive accident (CDA): the role and application of general behavior principles (GBPs). J Nucl Sci Technol. 2002;39(6):615–27. https://doi.org/10.1080/18811248.2002.9715242.

    Article  CAS  Google Scholar 

  33. Miyazaki K, Morimoto K, Yamamoto O, Harada Y, Yamaoka N. Thermal interaction of water droplet with molten tin. J Nucl Sci Technol. 1984;21(12):907–18. https://doi.org/10.1080/18811248.1984.9731133.

    Article  CAS  Google Scholar 

  34. Ciccarelli G, Frost DL. Fragmentation mechanisms based on single drop steam explosion experiments using flash X-ray radiography. Nucl Eng Des. 1994;146(1):109–32. https://doi.org/10.1016/0029-5493(94)90324-7.

    Article  CAS  Google Scholar 

  35. Gale WF, Totemeier TC. Smithells metals reference book. 8th ed. Oxford: Butterworth-Heinemann; 2004.

    Google Scholar 

  36. Wang C, Wang C, Chen B, Li M, Shen Z. Fragmentation regimes during the thermal interaction between molten tin droplet and cooling water. Int J Heat Mass Transfer. 2021;166:120782. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120782.

    Article  Google Scholar 

  37. Lowery AW. Truths and falsehoods of molten metal explosions in the aluminium industry. In: Hyland M, editor. Light metals 2015. Cham: Springer; 2016. p. 905–7.

    Google Scholar 

  38. Fazio C, Sobolev VP, Aerts A, Gavrilov S, Lambrinou K, Schuurmans P et al. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies-2015 edition. Nuclear Energy Agency of the OECD (NEA); 2015.

  39. Kolev N. Multiphase flow dynamics. II-Thermal and mechanical interactions. Berlin: Springer; 2002.

    Google Scholar 

  40. Abe Y, Matsuo E, Arai T, Nariai H, Chitose K, Koyama K, et al. Fragmentation behavior during molten material and coolant interactions. Nucl Eng Des. 2006;236(14):1668–81. https://doi.org/10.1016/j.nucengdes.2006.04.008.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Key R&D Program of China (No. 2017YFC0805100).

Author information

Authors and Affiliations

Authors

Contributions

ML: writing—original draft, conceptualization, project administration. LC: methodology, data curation. ZL: methodology, data curation. ZS: funding acquisition. CW: funding acquisition.

Corresponding authors

Correspondence to Manhou Li or Changjian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Chen, L., Liu, Z. et al. Fragmentation and solidification of fuel–coolant interaction of columnar molten iron and water. J Therm Anal Calorim 148, 10897–10906 (2023). https://doi.org/10.1007/s10973-023-12419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12419-3

Keywords

Navigation