Skip to main content
Log in

Power output enhancement in photovoltaic systems through integration of TiO2-doped phase change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The performance of a photovoltaic (PV) solar system is affected by the elevated module temperature, which is primarily dominated by solar irradiation. This study aims to manage the temperature of PV modules using passive cooling techniques and reports the improvement of comparative Output Power (OP), prospects and limitations. Two different passive cooling techniques have been developed and examined for regulating the PV systems installed in Jeddah. These techniques integrate the copper multi-pipe cooling frames with either phase change material (PCM), or TiO2-doped PCM. The ambient temperature, module surface temperature, solar radiation, wind speed, voltage, current, and maximum power output are recorded during the test. The results show that the module temperatures of PV/PCM and PV/PCM/TiO2 are reduced by 2.78% and 4.37%, respectively, compared to the conventional PV system. As a result, the output power of PV/PCM and PV/PCM/TiO2 exhibited a respective increase of 2.25% and 3.41% compared to the conventional PV system. The utilization of the copper multi-pipe frame filled with TiO2 doped PCM, known for its superior cooling performance, has rendered PV system highly promising in terms of contributing to future energy solution and augmenting the annual energy yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMF:

Aluminum metal foam

DC:

Direct current

PCE:

Power conversion efficiency

GW:

Giga Watt

I sc :

Short circuit current

MPPT:

Maximum power point tracking

PV:

Photovoltaic

PCM:

Phase change material

P max :

Maximum power

PO:

Power output

STC:

Standard test conditions

TiO2 :

Titanium dioxide

TWH:

Tera Watt Hour

V oc :

Open circuit voltage

References

  1. Hamzat AK, Sahin AZ, Omisanya MI, Alhems LM. Advances in PV and PVT cooling technologies: a review. Sustain Energy Technol Asses. 2021;47:101360. https://doi.org/10.1016/j.seta.2021.101360.

    Article  Google Scholar 

  2. U.S. Energy Information Administration (EIA): World Energy Projection System run r_210719.163829; and EIA, Annual Energy Outlook 2021, https://www.eia.gov/outlooks/ieo/data/pdf/ref/E_gen_r.pdf. Accessed Oct 2021.

  3. Al-Amri F, Maatallah TS, Al-Amri OF, Ali S, Sadaqat A, Ateeq IS, Zachariah R, Kayed TS. Innovative technique for achieving uniform temperatures across solar panels using heat pipes and liquid immersion cooling in the harsh climate in the Kingdom of Saudi Arabia. Alex Eng J. 2022;61:1413–24. https://doi.org/10.1016/j.aej.2021.06.046.

    Article  Google Scholar 

  4. Sudhakar P, Santosh R, Asthalakshmi B, Kumaresan G, Velraj R. Performance augmentation of solar photovoltaic panel through PCM integrated natural water circulation cooling technique. Renew Energy. 2021;172:1433–48. https://doi.org/10.1016/j.renene.2020.11.138.

    Article  Google Scholar 

  5. Biwole PH, Eclache P, Kuznik F. Phase-change materials to improve solar panel’s performance. Energy Build. 2013;62:59–67. https://doi.org/10.1016/j.enbuild.2013.02.059.

    Article  Google Scholar 

  6. Sultan TN, Farhan MS, Rikabi AL. Using cooling system for increasing the efficiency of solar cell. J Phys: Conf Ser. 2021;1973:012129. https://doi.org/10.1088/1742-6596/1973/1/012129.

    Article  CAS  Google Scholar 

  7. Almuwailhi A, Zeitoun O. Investigating the cooling of solar photovoltaic modules under the conditions of Riyadh. J King Saud Univ Eng Sci. 2023;35:123–36. https://doi.org/10.1016/j.jksues.2021.03.007.

    Article  Google Scholar 

  8. Agyekum EB, Kumar SP, Alwan NT, Velkin VI, Shcheklein SE. Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation. Heliyon. 2021;7:07920. https://doi.org/10.1016/j.heliyon.2021.e07920.

    Article  CAS  Google Scholar 

  9. Yang LH, Liang JD, Hsu CY, Yang TH, Chen SL. Enhanced efficiency of photovoltaic panels by integrating a spray cooling system with shallow geothermal energy heat exchanger. Renew Energy. 2019;134:970–81. https://doi.org/10.1016/j.renene.2018.11.089.

    Article  Google Scholar 

  10. Sharaf M, Huzayyin AS, Yousef MS. Performance enhancement of photovoltaic cells using phase change material (PCM) in winter. Alex Eng J. 2022;61:4229–39. https://doi.org/10.1016/j.aej.2021.09.044.

    Article  Google Scholar 

  11. Akshayveer KA, Singh AP, Kotha RS, Singh OP. Thermal energy storage design of a new bifacial PV/PCM system for enhanced thermo-electric performance. Energy Convers Manag. 2021;250:114912. https://doi.org/10.1016/j.enconman.2021.114912.

    Article  CAS  Google Scholar 

  12. Rubaiee S, Fazal MA. Influence of various solar radiations on the efficiency of a photovoltaic solar system integrated with a passive cooling technique. Energies. 2022;15:9584. https://doi.org/10.3390/en15249584.

    Article  CAS  Google Scholar 

  13. Jidhesh P, Arjunan TV, Gunasekar N. Thermal modeling and experimental validation of semitransparent photovoltaic-thermal hybrid collector using CuO nanofluid. Case Stud Therm Eng. 2021;27:101328. https://doi.org/10.1016/j.jclepro.2021.128360.

    Article  CAS  Google Scholar 

  14. Park J, Kim T, Leigh SB. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Sol Energy. 2014;105:561–74. https://doi.org/10.1016/j.solener.2014.04.020.

    Article  Google Scholar 

  15. Kant K, Shukla A, Sharma A, Biwole PH. Heat transfer studies of photovoltaic panel coupled with phase change material. Sol Energy. 2016;140:151–61. https://doi.org/10.1016/j.solener.2016.11.006.

    Article  CAS  Google Scholar 

  16. Wongwuttanasatian T, Sarikarin T, Suksri A. Performance enhancement of a photovoltaic module by passive cooling using phase change material in a finned container heat sink. Sol Energy. 2020;195:47–53. https://doi.org/10.1016/j.solener.2019.11.053.

    Article  Google Scholar 

  17. Kaddoura TO, Ramli MAM, Al-Turki YA. On the estimation of the optimum tilt angle of PV panel in Saudi Arabia. Renew Sustain Energy Rev. 2016;65:626–34. https://doi.org/10.1016/j.rser.2016.07.032.

    Article  Google Scholar 

  18. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488:294–303. https://doi.org/10.1038/nature11475.

    Article  CAS  PubMed  Google Scholar 

  19. AlOtaibi Z, Khonkar H, AlAmoudi A, Alqahtani S. Current status and future perspectives for localizing the solar photovoltaic industry in the Kingdom of Saudi Arabia. Energy Transit. 2020;4:1–9. https://doi.org/10.1007/s41825-019-00020-y.

    Article  Google Scholar 

  20. Chandak P. Saudi Arabia To Fall Short Of Its 2023 Renewable Target With 25.8 GW—Report, https://solarquarter.com/2022/09/14/saudi-arabia-to-fall-short-of-its-2023-renewable-target-with-25-8-gw-report/. Accessed 14 Sept 2022.

  21. Jeddah Monthly temperatures for the year of 2015–2021 (2022). http://hikersbay.com/climate/saudiarabia/jeddah?lang=en, Accessed 6 Jan 2022.

  22. Ahssein Amran YH, Mugahed Amran YH, Alyousef R, Alabduljabbar H. Renewable and sustainable energy production in Saudi Arabia according to Saudi Vision 2030; Current status and future prospects. J Clean Prod. 2020;247:119602. https://doi.org/10.1016/j.jclepro.2019.119602.

    Article  Google Scholar 

  23. January weather forecast and climate Jeddah, Saudi Arabia. https://weatherspark.com/h/d/101171/2022/1/6/Historical-Weather-on-Thursday-January-6-2022-in-Jeddah-Saudi-Arabia, Accessed 6 Jan 2022

  24. Senthilraja S, Gangadevi R, Marimuthu R, Baskaran M. Performance evaluation of water and air based PVT solar collector for hydrogen production application. Int J Hydrog Energy. 2020;45:7498–507. https://doi.org/10.1016/j.ijhydene.2019.02.223.

    Article  CAS  Google Scholar 

  25. Karthick A, Ramanan P, Ghosh A, Stalin B, Vignesh Kumar R, Baranilingesan I. Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material. Asia-Pac J Chem Eng. 2020. https://doi.org/10.1002/apj.2480.

    Article  Google Scholar 

  26. Nada SA, El-Nagar DH, Hussein HM. Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Convers Manag. 2018;166:735–43. https://doi.org/10.1016/j.enconman.2018.04.035.

    Article  CAS  Google Scholar 

  27. Waqas A, Ji J, Bahadar A, Xu L, Zeshan, Modjinou M. Thermal management of conventional photovoltaic module using phase change materials and experimental investigation. Energy Explor Exploit. 2019;37(5):1516–40. https://doi.org/10.1177/0144598718795697.

    Article  CAS  Google Scholar 

  28. Kazemian A, Hosseinzadeh M, Sardarabadi M, Passandideh-Fard M. Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints. Energy. 2018;162:210–23. https://doi.org/10.1016/j.energy.2018.07.069.

    Article  CAS  Google Scholar 

  29. Rubaiee S, Fazal MA. Efficiency enhancement of photovoltaic solar system by integrating multi-pipe copper frame filled with ZnO doped phase change material. MRS Energy Sustain. 2023;10:1–8. https://doi.org/10.1557/s43581-023-00063-1.

    Article  Google Scholar 

  30. Fazal MA, Rubaiee S. Progresses of PV cell technology: feasibility of building materials, cost, performance, and stability. Sol Energy. 2023;258:203–19. https://doi.org/10.1016/j.solener.2023.04.066.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), University of Jeddah, Jeddah, under Grant No. (UJ-20-010-DR). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Fazal.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazal, M.A., Rubaiee, S. Power output enhancement in photovoltaic systems through integration of TiO2-doped phase change material. J Therm Anal Calorim 148, 11093–11101 (2023). https://doi.org/10.1007/s10973-023-12405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12405-9

Keywords

Navigation