Skip to main content
Log in

Experimental investigation of the using graphene oxide and titanium dioxide nanolubricant for a refrigeration system operated by mixed refrigerant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A compressor is the main cause of energy intake in a vapor-compression refrigeration (VCR) system. The potential drop in compression work may improve the performance of the compressor’s suction and discharge features of the refrigeration system. The proposed study has obtained VCR system with the hydrocarbon mixture of R290/R600 (50/50) as a refrigerant application to study the compound nanoparticles, such as graphene oxide (GO) and titanium dioxide (TiO2) as the compressor lubricant oil. Also, six concentrations were utilized to test the system, which are MO, mineral oil + 100% GO, mineral oil + 100% TiO2, mineral oil + 75% GO + 25% TiO2, mineral oil + 50% GO + 50% TiO2, and mineral oil + 25% GO + 75% TiO2. The results showed that, compared to a conventional system, the compressor discharge temperatures and suction pressure were decreased when using various mass percentages of nanoparticles in the R290/R600 VCR system. With the addition of compound nanoparticles, mineral oil becomes more viscous. The results show that by 1.0 mass% concentrations of compound nanoparticles, the compressor’s energy usage decreased by 8.48%. The addition of compound nanoparticles has raised the COP of the VCR system by a nearly 56%. The nanoparticles made of the 50% GO + 50% TiO2 compound thus performed well in the R290/R600 refrigeration system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability statements

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

GO:

Graphene oxide

HC:

Hydrocarbon

VCR:

Vapor compression refrigeration

HFCs:

Hydrofluorocarbons

CFCs:

Chlorofluorocarbons

COP:

Coefficient of performance

MO:

Mineral oil

GO:

Graphene oxide

TiO2 :

Titanium dioxide

Zno:

Zinc oxide

CuO:

Copper (II) oxide

Al2O3 :

Aluminum oxide

SiO2 :

Silicon dioxide

PVE:

Polyvinyl ether

POE:

Polyolester

AB:

Alkylbenzene

PAG:

Polyalkylene glycol

References

  1. Azeem Khan W. Impact of time-dependent heat and mass transfer phenomenon for magnetized Sutterby nanofluid flow. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2140857.

    Article  Google Scholar 

  2. Irfan M, Khan WA, Pasha AA, Alam MI, Islam N, Zubair M. Significance of non-Fourier heat flux on ferromagnetic Powell-Eyring fluid subject to cubic autocatalysis kind of chemical reaction. Int Commun Heat Mass Transf. 2022;138:106374. https://doi.org/10.1016/j.icheatmasstransfer.2022.106374.

    Article  CAS  Google Scholar 

  3. Anjum N, Khan WA, Hobiny A, Azam M, Waqas M, Irfan M. Numerical analysis for thermal performance of modified Eyring Powell nanofluid flow subject to activation energy and bioconvection dynamic. Case Stud Therm Eng. 2022;39:102427. https://doi.org/10.1016/j.csite.2022.102427.

    Article  Google Scholar 

  4. Tabrez M, Azeem Khan W. Exploring physical aspects of viscous dissipation and magnetic dipole for ferromagnetic polymer nanofluid flow. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2135794.

    Article  Google Scholar 

  5. Waqas M, Khan WA, Pasha AA, Islam N, Rahman MM. Dynamics of bioconvective Casson nanoliquid from a moving surface capturing gyrotactic microorganisms, magnetohydrodynamics and stratifications. Therm Sci Eng Prog. 2022;36:101492. https://doi.org/10.1016/j.tsep.2022.101492.

    Article  CAS  Google Scholar 

  6. Hussain Z, Azeem Khan W. Impact of thermal-solutal stratifications and activation energy aspects on time-dependent polymer nanoliquid. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2128229.

    Article  Google Scholar 

  7. Khan WA, Arshad Z, Hobiny A, Saleem S, Al-Zubaidi A, Irfan M. Impact of magnetized radiative flow of sutterby nanofluid subjected to convectively heated wedge. Int J Mod Phys B. 2022;36(16):2250079. https://doi.org/10.1142/S0217979222500795.

    Article  CAS  Google Scholar 

  8. Khan WA, Ahmad A, Anjum N, Abbas SZ, Chammam W, Riahi A, Rebei H, Zaway M. Impact of nanoparticles and radiation phenomenon on viscoelastic fluid. Int J Mod Phys B. 2022;36(05):2250049. https://doi.org/10.1142/S0217979222500497.

    Article  CAS  Google Scholar 

  9. Khan WA, Anjum N, Waqas M, Abbas SZ, Irfan M, Muhammad T. Impact of stratification phenomena on a nonlinear radiative flow of sutterby nanofluid. J Mater Res Technol. 2021;15:306–14. https://doi.org/10.1016/j.jmrt.2021.08.011.

    Article  CAS  Google Scholar 

  10. Khan WA, Sun H, Shahzad M, Ali M, Sultan F, Irfan M. Importance of heat generation in chemically reactive flow subjected to convectively heated surface. Indian J Phys. 2021;95:89–97. https://doi.org/10.1007/s12648-019-01678-2.

    Article  CAS  Google Scholar 

  11. Khan WA, Ali M, Irfan M, Khan M, Shahzad M, Sultan F. A rheological analysis of nanofluid subjected to melting heat transport characteristics. Appl Nanosci. 2020;10:3161–70. https://doi.org/10.1007/s13204-019-01067-5.

    Article  CAS  Google Scholar 

  12. Khan WA, Waqas M, Chammam W, Asghar Z, Nisar UA, Abbas SZ. Evaluating the characteristics of magnetic dipole for shear-thinning Williamson nanofluid with thermal radiation. Comput Methods Progr Biomed. 2020;191:105396. https://doi.org/10.1016/j.cmpb.2020.105396.

    Article  CAS  Google Scholar 

  13. Khan WA, Waqas M, Kadry S, Asghar Z, Abbas SZ, Irfan M. On the evaluation of stratification based entropy optimized hydromagnetic flow featuring dissipation aspect and Robin conditions. Comput Methods Progr Biomed. 2020;190:105347. https://doi.org/10.1016/j.cmpb.2020.105347.

    Article  CAS  Google Scholar 

  14. Sanukrishna SS, Prakash MJ. Exploiting the thermal and rheological potentials of graphene-PAG nanolubricant for the development of energy efficient refrigeration systems. Mater Today Proc. 2022;59:7–14. https://doi.org/10.1016/j.matpr.2021.09.471.

    Article  CAS  Google Scholar 

  15. Senthilkumar A, Anderson A. Experimental investigation of SiO2 nanolubricants for R410A vapour compression refrigeration system. Mater Today Proc. 2021;44:3613–7. https://doi.org/10.1016/j.matpr.2020.09.659.

    Article  CAS  Google Scholar 

  16. Adelekan DS, Ohunakin OS, Oladeinde MH, Jatinder G, Atiba OE, Nkiko MO, Atayero AA. Performance of a domestic refrigerator in varying ambient temperatures, concentrations of TiO2 nanolubricants and R600a refrigerant charges. Heliyon. 2021;7(2):e06156. https://doi.org/10.1016/j.heliyon.2021.e06156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Senthilkumar A, Anderson A, Alagarsamy S. Performance enhancement and ANN prediction of R600a vapour compression refrigeration system using CuO/SiO2 hybrid nanolubricants: an energy conservation approach. Neural Comput Appl. 2022;34(6):4923–35. https://doi.org/10.1007/s00521-021-06681-5.

    Article  Google Scholar 

  18. Madyira DM, Babarinde TO, Mashinini PM. Performance improvement of R600a with graphene nanolubricant in a domestic refrigerator as a potential substitute for R134a. Fuel Commun. 2022;10:100034. https://doi.org/10.1016/j.jfueco.2021.100034.

    Article  Google Scholar 

  19. Senthilkumar A, Sahaluddeen PAM, Noushad MN, Musthafa EKM. Experimental investigation of ZnO/SiO2 hybrid nano-lubricant in R600a vapour compression refrigeration system. Mater Today Proc. 2021;45:6087–93. https://doi.org/10.1016/j.matpr.2020.10.180.

    Article  CAS  Google Scholar 

  20. Subhedar DG, Patel JZ, Ramani BM. Experimental studies on vapour compression refrigeration system using Al2O3/mineral oil nano-lubricant. Aust J Mech Eng. 2022;20(4):1136–41. https://doi.org/10.1080/14484846.2020.1784558.

    Article  Google Scholar 

  21. Zawawi NNM, Azmi WH, Ghazali MF. Performance of Al2O3-SiO2/PAG composite nanolubricants in automotive air-conditioning system. Appl Therm Eng. 2022;204:117998. https://doi.org/10.1016/j.applthermaleng.2021.117998.

    Article  CAS  Google Scholar 

  22. Babarinde TO, Akinlabi SA, Madyira DM, Adedeji PA, Ekundayo FM. Improving the performance of LPG with graphene-nanolubricant in a domestic refrigerator: an artificial intelligence approach. Int J Ambient Energy. 2021. https://doi.org/10.1080/01430750.2021.1914160.

    Article  Google Scholar 

  23. Narayanasarma S, Kuzhiveli BT. Tribological and rheological studies of polyolester (POE) Oil and POE+ alumina nanolubricant and its effect on the performance of a refrigeration system. In: Recent advances in hybrid and electric automotive technologies: select proceedings of HEAT 2021. Singapore: Springer Nature Singapore; 2022. p. 45–58. https://doi.org/10.1007/978-981-19-2091-2_5

  24. Choi TJ, Kim DJ, Jang SP, Park S, Ko S. Effect of polyolester oil-based multiwalled carbon-nanotube nanolubricant on the coefficient of performance of refrigeration systems. Appl Therm Eng. 2021;192:116941. https://doi.org/10.1016/j.applthermaleng.2021.116941.

    Article  CAS  Google Scholar 

  25. Babarinde TO, Madyira DM, Mashinini PM. Performance evaluation of graphene-enhanced LPG in a vapour compression refrigeration system: an experimental approach. Energy Rep. 2022;8:1226–35. https://doi.org/10.1016/j.egyr.2022.07.140.

    Article  Google Scholar 

  26. Ismail MF, Azmi WH, Mamat R, Ab RR. Rheological behaviour and thermal conductivity of polyvinyl ether lubricant modified with SiO2-TiO2 nanoparticles for refrigeration system. Int J Refrig. 2022;138:118–32. https://doi.org/10.1016/j.ijrefrig.2022.03.026.

    Article  CAS  Google Scholar 

  27. SarrafzadehJavadi F, Saidur R. Thermodynamic and energy efficiency analysis of a domestic refrigerator using Al2O3 nano-refrigerant. Sustainability. 2021;13(10):5659. https://doi.org/10.3390/su13105659.

    Article  CAS  Google Scholar 

  28. Afshari F, Comakli O, Lesani A, Karagoz S. Characterization of lubricating oil effects on the performance of reciprocating compressors in air–water heat pumps. Int J Refrig. 2017;74:505–16. https://doi.org/10.1016/j.ijrefrig.2016.11.017.

    Article  CAS  Google Scholar 

  29. Afshari F, Comakli O, Adiguzel N, Zavaragh HG. Influence of refrigerant properties and charge amount on performance of reciprocating compressor in air source heat pump. J Energy Eng. 2017;143(1):04016025. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000377.

    Article  Google Scholar 

  30. Afshari F, Karagoz S, Comakli O, Zavaragh HG. Thermodynamic analysis of a system converted from heat pump to refrigeration device. Heat Mass Transf. 2019;55:281–91. https://doi.org/10.1007/s00231-018-2412-5.

    Article  CAS  Google Scholar 

  31. Afshari F, Sahin B, Khanlari A, Manay E. Experimental optimization and investigation of compressor cooling fan in an air-to-water heat pump. Heat Transf Res. 2020;51(4):319–31. https://doi.org/10.1615/HeatTransRes.2019030709.

    Article  Google Scholar 

  32. Senthilkumar A, Abhijith EP, Jawhar CAA. Experimental investigation of Al2O3/SiO2 hybrid nanolubriant in R600a vapour compression refrigeration system. Mater Today Proc. 2021;45:5921–4. https://doi.org/10.1016/j.matpr.2020.08.779.

    Article  CAS  Google Scholar 

  33. Senthilkumar A, Abhishek PV, Adithyan M, Arjun A. Experimental investigation of CuO/SiO2 hybrid nanolubricant in R600a vapor compression refrigeration system. Mater Today Proc. 2021;45:6083–6. https://doi.org/10.1016/j.matpr.2020.10.178.

    Article  CAS  Google Scholar 

  34. Senthilkumar A, Anderson A. Experimental investigation of SiO2 nanolubriant for R410A vapour compression refrigeration system. Mater Today Proc. 2021;44:3613–7. https://doi.org/10.1016/j.matpr.2020.09.659.

    Article  CAS  Google Scholar 

  35. Senthilkumar A, Sahaluddeen PAM, Noushad MN, Musthafa EKM. Experimental investigation of ZnO/SiO2 hybrid nanolubricant in R600a vapors compression refrigeration system. Mater Today Proc. 2021;45:6087–93. https://doi.org/10.1016/j.matpr.2020.10.180.

    Article  CAS  Google Scholar 

  36. Senthilkumar A, Anderson A, Sekar M. Performance analysis of R600a vapor compression refrigeration system using CuO/Al2O3 hybrid nanolubriant. Appl Nano Sci. 2023;13:899–915. https://doi.org/10.1007/s13204-021-01936-y.

    Article  CAS  Google Scholar 

  37. Karthick M, Karuppiah SK, Kanthan V. Performance investigation and exergy analysis of vapor compression refrigeration system operated using R600a refrigerant and nanoadditive compressor oil. Therm Sci. 2020;24:2977–89.

    Article  Google Scholar 

  38. Zawawi NNM, Azmi WH, Redhwan AAM, Sharif MZ, Samykano M. Experimental investigation on thermo-physical properties of metal oxide composite nanolubricants. Int J Refrig. 2018;89:11–21. https://doi.org/10.1016/j.ijrefrig.2018.01.015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the work.

Corresponding author

Correspondence to Pinjala Tejomurthi.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Animal and Human Rights

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed consent

For this type of analysis, formal consent is not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tejomurthi, P., Kumar, K.D. & Balakrishna, B. Experimental investigation of the using graphene oxide and titanium dioxide nanolubricant for a refrigeration system operated by mixed refrigerant. J Therm Anal Calorim 148, 10227–10239 (2023). https://doi.org/10.1007/s10973-023-12388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12388-7

Keywords

Navigation