Skip to main content
Log in

High pressure mercury AC discharge tube exposed to coherent laser: optical, electrical and thermal aspects

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Most optical emission line intensities remain unchanged for a mercury HID plasma, exposed to coherent argon ion laser beam Innova 308 C (476.5 nm) in points far from electrodes. Small raise of Hg-546.08 nm line is due to photo-excitation of Ar+ ions, followed by excitation transfers through collision processes from excited (Ar+)* ions to Ar atoms, then from excited (Ar)* to Hg atoms. When the laser beam hits the electrode tip (photoelectric effect), the amount of electrons involved in plasma collisions increases: all characteristic emission spectral lines are intensifying. Electron temperature and concentration were also calculated. Differential Scanning Calorimetry performed in case of tungsten electrode with emissive material (Y2O3, BaCO3, CaCO3, WO3), linear and non-isothermally heated (0.17 K s-1) in flowing air, from 290.61 to 1603.72 K (platinum crucible), revealed both endothermic (CaCO3 and of BaCO3 decompositions) and exothermal (obtaining CaWO4, BaWO4 and Ba3WO6) processes. Thermogravimetry Analysis showed a mass decrease of 0.498%, in 290.61−505.15 K temperature range, due to water release. Oxidation of tungsten electrode causes a significant mass increase of 17.292% in 809.15−1183.15 K range. BaWO4, Ba3WO6 and WO3 sublimations gave a mass fall of 6.757% in 1513.15−1603.72 K range. No thermal effects were recorded on heating in argon atmosphere, from 446.15 to 1596.15 K, in alumina crucible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Van de Sanden MCM, Janssen GM, De Regt JM, Schram DC, Van der Mullen JAM, Van der Sijde B. The distribution pattern of the electron density and the electron temperature in a weakly compressible argon plasma jet measured by a Langmuir triple probe. Rev Sci Instrum. 1992;63(6):3369–77.

    Google Scholar 

  2. Hutchinson IH. Principles of plasma diagnostics. Cambridge: Cambridge University Press; 1987.

    Google Scholar 

  3. Ed Auciello O, and Flamm DL (1989). Plasma Diagnostics, volume 1: discharge parameters and chemistry. Academic Press. Boston.

  4. Meulenbroeks RFG, Steenbakkers MFM, Qing Z, Van de Sanden MCM, Schram DC. Four ways to determine the electron density in low-temperature plasmas. Phys Rev E. 1994;49:2272–5.

    CAS  Google Scholar 

  5. Poissant G, Dudeck M. Velocity profiles in a rarefied argon plasma stream by crossed electrostatic probe. J Appl Phys. 1985;58(5):1772–9.

    CAS  Google Scholar 

  6. Kelkar M, Heberlein J. Wire-arc spray modeling. J Plasma Chem Plasma Process. 2002;22(1):1–25.

    CAS  Google Scholar 

  7. Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A. Transport properties in a two-temperature plasma: theory and application. Phys Rev E. 2001;64(2): 026409.

    CAS  Google Scholar 

  8. Boulos MI, Fauchais P, Pfender E. Thermal plasmas: fundamentals and applications. Springer; 1994.

  9. Fridman A, Cho YI. Transport phenomena in plasma. Elsevier: Academic Press; 2007.

    Google Scholar 

  10. Cristea M, Zissis G. Thin barium layer formation and its influence on tungsten electrode arc attachment modes in HID lamps. J Optoelectron Adv Mater. 2003;5(2):511–20.

    CAS  Google Scholar 

  11. Waymouth JF. Overview in radiative processes in discharge plasmas. New York: Plenum; 1986.

    Google Scholar 

  12. Van de Sande MJ. Laser scattering on low temperature plasmas-high resolution and stray light rejection. Eindhoven: Eindhoven Technische Universiteit; 2002.

    Google Scholar 

  13. Hidaka R, Ooki T, Takeda K, Kondo K, Kanada H, Uchino K, Matsuda Y, Muraoka K, Ruby AM. Laser scattering diagnostics of a supersonic plasma flow for low-pressure plasma spraying. Jpn J Appl Phys. 1987;26(10):1724–6.

    Google Scholar 

  14. Ravary B, Fulcheri L, Bakken JA, Flamant G, Fabry F. Influence of the electromagnetic forces on momentum and heat transfer in a 3-phase ac plasma reactor. Plasma Chem Plasma Process. 1999;19(1):69–89.

    CAS  Google Scholar 

  15. Carbone E, Nijdam S. Thomson scattering on non-equilibrium low density plasmas: principles, practice and challenges. Plasma Phys Control Fusion. 2015;57(1): 014026.

    Google Scholar 

  16. Garcia MC, Varo M, Martinez P. Excitation of species in an expanded argon microwave plasma at atmospheric pressure. Plasma Chem Plasma Process. 2010;30:241–55.

    CAS  Google Scholar 

  17. Benilov MS. Understanding and modeling plasma-electrode interaction in high pressure arc discharges: a review. J Phys D Appl Phys. 2008;41: 144001.

    Google Scholar 

  18. Chen WLT, Oerlein J, Pfender E, Pateyron B, Delluc G, Elchinger MF, Fauchais P. Thermodynamic and transport properties of argon/helium plasmas at atmospheric pressure. Plasma Chem Plasma Process. 1995;15(3):559–79.

    CAS  Google Scholar 

  19. Zissis G, Benetruy P, Bernat I. Modeling the Hg-Ar low-pressure-discharge positive column: a comparative study. Phys Rev A. 1992;45(2):1135–48.

    CAS  PubMed  Google Scholar 

  20. Zhou J, Pérez-Grande D, Fajardo P, Ahedo E. Numerical treatment of a magnetized electron fluid model within an electromagnetic plasma thruster simulation code. Plasma Sources Sci Technol. 2019;28(1):11504.

    Google Scholar 

  21. Burm KTAL. The fourth state of matter. Plasma Chem Plasma Process. 2012;32:401–7.

    CAS  Google Scholar 

  22. Mostaghimi J, Boulos MI. Two-dimensional electromagnetic field effects in induction plasma modeling. Plasma Chem Plasma Process. 1989;9(1):25–44.

    Google Scholar 

  23. Harabor NA, Harabor A, Palarie I, Popescu IM, Zissis G. Time Evolution of Optical Emission Spectrum of a Hg-HID Lamp Exposed to X-ray. Plasma Chem Plasma Process. 2010;30:449–59.

    CAS  Google Scholar 

  24. Harabor NA, Harabor A, Popescu IM. Transient Emission Spectra of a High Pressure Hg Lamp Exposed to X-Ray. UPB Sci Bull Series A. 2011;73(3):173–84.

    Google Scholar 

  25. Harabor A, Rotaru P, Harabor NA. Thermal and spectral behaviour of (Y, Eu)VO4 powder. J Therm Anal Calorim. 2013;111:1211–9.

    CAS  Google Scholar 

  26. Van Gessel AFH, Carbone EAD, Bruggeman PJ, Van der Mullen JJAM. Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering. Plasma Sources Sci Technol. 2012;21:015003–11.

    Google Scholar 

  27. Jonkers J. Excitation and transport in small scale plasmas. Ph.D. thesis: Eindhoven University of Technology. www.wikipedia.org/wiki/Work function. Accessed 21 Jun 2014

  28. Kramida A, Ralchenko Yu, Reader J and NIST Atomic spectra database (version 5.1) [Online] Available: http://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD; 2014, February 13.

  29. Mishra KC, Garner R, Schmidt PC. Model of work function of tungsten cathodes with barium oxide coating. J Appl Phys. 2004;95(6):3069–74.

    CAS  Google Scholar 

  30. Bakker LP, Kroesen GMW. Thomson scattering in a low-pressure argon mercury positive column. J Appl Phys. 2000;88(2):3899–904.

    CAS  Google Scholar 

  31. Forman R. Surface studies of barium and barium oxide on tungsten and its application to understanding the mechanism of operation of an impregnated tungsten cathode. J Appl Phys. 1976;47:5272–9.

    CAS  Google Scholar 

  32. Penney CM, St PRL, Lapp M. Absolute rotational Raman cross sections for N2, O2, and CO2. J Opt Soc Am. 1974;64(5):712–6.

    CAS  Google Scholar 

  33. Fenner W, Hyatt HA, Kellam JM, Porto SPS. Raman cross section of some simple gases. J Opt Soc Am. 1973;63(1):73–7.

    CAS  Google Scholar 

  34. Hyatt HA, Cherlow JM, Fenner WR, Porto SPS. Cross section for the Raman effect in molecular nitrogen gas. J Opt Soc Am. 1973;63(12):1504–6.

    Google Scholar 

  35. Belmonte T, Noël C, Gries T, Martin J, Henrion G. Theoretical background of optical emission spectroscopy for analysis of atmospheric pressure plasmas. Plasma Sources Sci Technol. 2015;24: 064003.

    Google Scholar 

  36. Harabor NA and Harabor (2015). A. Light Sources: HID Lamps. Universitaria Publishing Houss, Craiova,

  37. Harabor NA, Harabor A, Rotaru P. Transient Hg, Ba+, Ca+ and Y+ optical emission lines of a mercury hid lamp exposed to x-ray: thermal analysis of the tungsten electrode with emissive mixture based on barium, calcium and yttrium. Plasma Chem Plasma Process. 2017;37(1):305–23.

    CAS  Google Scholar 

  38. Cristea M, Zissis G. Thin barium layer formation and its influence on tungsten electrode arc attachment modes in HID lamps. J Optoelectron Adv Mater. 2007;5(2):511–20.

    Google Scholar 

  39. Beck I, Josepovits VK, Sneider J, Toth Z. Investigation of electron emission properties of Ba-activated tungsten cathodes. J Phys D Appl Phys. 2005;38(27):3865.

    CAS  Google Scholar 

  40. Bhalla S Ranbir (1979). US Patent 4152619 A HID lamp electrode comprising barium (yttrium or rare earth metal) tungstate or molybdate. Westinghouse Electric Corp, USA

  41. De Kok Johannis () (1977). Brevet US 4052634. U.S. Philips Corporation (Current U.S. class: 313/184; 313/213; 313/218; 313/229; Cathodes coated with emissive materials): New York

  42. Zalach J, Araoud Z, Charrada K, Franke S, Schoepp H, Zissis G. Experimental and theoretical investigations on the warm-up of a high-pressure mercury discharge lamp. Phys Plasmas. 2011;18(3):033511–9.

    Google Scholar 

  43. Karunadasaa K, Manoratnea CH, Pitawalab HMTGA, Rajapaksec RMG. Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. J Phys Chem Solids. 2019;134:21–8.

    Google Scholar 

  44. Galan I, Glasser FP, Andrade C. Calcium carbonate decomposition. J Therm Anal Calorim. 2013;111:1197–202.

    CAS  Google Scholar 

  45. Arvanitidis I, Sichen Du, Seetharaman S. A Study of the thermal decomposition of BaCO3. Metall and Mater Trans B. 1996;27B:409–16.

    CAS  Google Scholar 

  46. Hackspill L, Wolfe G. Compt Rend. 1937;204:1820–2.

    CAS  Google Scholar 

  47. Baker EH. The barium oxide–carbon dioxide system in the pressure range 0.01–450 atmospheres. J Chem Soc. 1964;1:699–704s.

    Google Scholar 

  48. Dong J, Li J, Zhu F, Li Z, Farawi R. Melting curve minimum of barium carbonate BaCO3 near 5 Gpa. Am Miner. 2019;104:671–8.

    Google Scholar 

  49. Popovič A, Bencze L, Marsel J, Lesar A, Vass-Balthazar K, Kaposi O. Rap Comm Mass Spect. 1993;7(6):416.

    Google Scholar 

  50. Higashi C, de Lima NB, Matos JR, Giovedi C, Motta CC (2005). Electron emitting barium-calcium aluminate obtained from chemical solution techniques. Proceedings of the SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics. Brasilia, Brazil

  51. Hughes RC, Coppola PP, Evans HT, Hughes RC, Coppola PP, Evans HT. Chemical reactions in barium oxide on tungsten emitters. J Appl Phys. 1952;23(6):635–41.

    CAS  Google Scholar 

  52. Cristea M (2008). Nonlinearities in electrodes-plasma interaction in high pressure mercury vapors electrical discharge. PRINTECH: Bucharest.

  53. Patnaik P (2003). Handbook of inorganic chemical compounds. McGraw-Hill: New York, Chicago San Francisco, Lisbon, London, Madrid, Mexico City, Milan, New Delhi

  54. Gromov A, Kwon YS, Choi PP. Interaction of tungsten nanopowders with air under different conditions. Scripta Mater. 2005;52(5):375–80.

    CAS  Google Scholar 

  55. Flor G, Massarotti V, Riccardi R. On the mechanism of CaWO3 formation in the Solid State from CaO and WO3. Z Naturforsch A. 1977;32(2):160–2.

    Google Scholar 

  56. Christov SG, Vodenicharov CM. On the experimental proof of the general theory of electron emission from metal. Solid State Electron. 1968;11(8):757–66.

    Google Scholar 

  57. Waymouth JF (1971). Electric discharge lamps: monograph in modern electrical technology. MA: MIT Press: Cambridge

  58. Ingraham TR, Marier P. Kinetics studies on the thermal decomposition of calcium carbonate. Canad J Chem Eng. 1963;41:170–3.

    CAS  Google Scholar 

  59. Zheng J, Huang J, Tao L, Li Z, Wang Q. A multifaceted kinetic model for the thermal decomposition of calcium carbonate. Crystals. 2020;10(9):849.

    Google Scholar 

  60. Rotaru A, Schiemer J, Carpenter M. Elastic and inelastic relaxations accompanying relaxor dielectric behaviour of Ba6GaNb9O30 tetragonal tungsten bronze from resonant ultrasound spectroscopy. J Therm Anal Calorim. 2016;124(2):571–83.

    CAS  Google Scholar 

  61. Lvov BL, Ugolkov VL. Peculiarities of CaCO3, SrCO3 and BaCO3 decomposition in CO2 as a proof of their primary dissociative evaporation. Thermochim Acta. 2004;410:45–55.

    Google Scholar 

  62. Harabor A, Rotaru P, Harabor NA, Nozar P, Rotaru A. Orthorhombic YBCO-123 ceramic oxide superconductor: structural, resistive and thermal properties. Ceram Int. 2019;45(2):2899–907.

    CAS  Google Scholar 

  63. Harabor A, Rotaru P, Harabor NA, Nozar P, Rotaru A. Structural, thermal and superconducting properties of Ag2O-doped YBa2Cu3O7-x composite materials. Ceram Int. 2023;49(9):14904–16.

    CAS  Google Scholar 

  64. Han BY, Khoroshilov A, Tyurin AV, Baranchikov AE, Razumov MI, Ivanova OS, Gavrichev KS, Ivanov VK. WO3 thermodynamic properties at 80–1256 K revisited. J Therm Anal Calorim. 2020;142:1533–43.

    CAS  Google Scholar 

  65. Asim N, Syuhami MF, Badei M, Yarmo MA. WO3 modification by synthesis of nanocomposites. APCBEE Proc. 2014;9:175–80.

  66. Szilágyi IM, Kállay-Menyhárd A, Šulcová P, Kristóf J, Pielichowski K, Šimon P. Recent advances in thermal analysis and calorimetry presented at the 1st journal of thermal analysis and calorimetry conference and 6th v4 (joint czech-hungarian-polish-slovakian) thermoanalytical conference (2017). J Therm Anal Calorim. 2018;133:1–4.

    Google Scholar 

  67. McNulty J, Pesquera D, Gardner J, Rotaru A, Playford H, Tucker M, Carpenter M, Morrison F. Local structure and order-disorder transitions in “empty” ferroelectric tetragonal tungsten bronzes. Chem Mater. 2020;32(19):8492–501.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Harabor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harabor, NA., Harabor, A., Rotaru, P. et al. High pressure mercury AC discharge tube exposed to coherent laser: optical, electrical and thermal aspects. J Therm Anal Calorim 148, 10515–10529 (2023). https://doi.org/10.1007/s10973-023-12380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12380-1

Keywords

Navigation