Skip to main content
Log in

Preparation and characterization of surfactant-free CNT based nanofluid in EG/water (60:40 ratio) basefluid for refrigerant application

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aims to prepare a surfactant-free, stable CNT nanofluid to be used as secondary refrigerant. Antifreeze having EG/water was chosen as a basefluid. The nanofluid was prepared by two different methods. Firstly, the nanofluid was prepared by dispersing CNT in EG/water mixture named as CNT (EG/water) nanofluid. In the second method, CNT was dispersed in EG followed by addition of water named as (CNT-EG)/water nanofluid. Sonication time study revealed 4.30 h and 80 min as optimum sonication time for preparation of CNT (EG/water) and (CNT-EG)/water nanofluid, respectively. (CNT-EG)/water nanofluid was more stable (145 days) as compared to CNT (EG/water) nanofluid (130 days). It was found by FTIR and NMR spectroscopy that in (CNT-EG)/water nanofluid, EG interacts with CNT through trans conformation that results in higher interaction and better stabilization. As the concentration increases, thermal conductivity increases in both the nanofluids in comparison to basefluid. However, higher enhancement was observed in case of (CNT-EG)/water nanofluid. Viscosity augmentation is higher in CNT (EG/water) (19%) as compared to (CNT-EG)/water (15%) nanofluid at shear rate 100 s−1. Thus, preparing (CNT-EG)/water nanofluid by dispersing CNT in EG followed by addition of water is an economical and time saving method for producing stable nanofluid instead of dispersing CNT directly into mixture of EG/water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

EG:

Ethylene glycol

ρ(nf) :

Density of nanofluid (Kg m3)

Φ:

Amount of CNT (V%)

ρ(bf) :

Density of basefluid (Kg m3)

M(nf) :

Mass of nanofluid (kg)

M(bf) :

Mass of basefluid (Kg)

V(nf) :

Volume of nanofluid (m3)

t1 :

Sonication time before adding water (min)

t2 :

Sonication time after adding water (min)

References

  1. RK Ajeel K Sopian R Zulkifli 2021 Thermal-hydraulic performance and design parameters in a curved-corrugated channel with L-shaped baffles and nanofluid J Energy Storage https://doi.org/10.1016/j.est.2020.101996

    Article  Google Scholar 

  2. RK Ajeel K Sopian R Zulkifli 2021 A novel curved-corrugated channel model: thermal-hydraulic performance and design parameters with nanofluid Int Commun Heat Mass Transf https://doi.org/10.1016/j.icheatmasstransfer.2020.105037

    Article  Google Scholar 

  3. RK Ajeel WSIW Salim K Hasnan 2020 Numerical investigations of heat transfer enhancement in a house shaped-corrugated channel: combination of nanofluid and geometrical parameters Therm Sci Eng Prog https://doi.org/10.1016/j.tsep.2019.100376

    Article  Google Scholar 

  4. RK Ajeel WSIW Salim K Hasnan 2019 Thermal performance comparison of various corrugated channels using nanofluid: numerical study Alex Eng J 58 1 75 87 https://doi.org/10.1016/j.aej.2018.12.009

    Article  Google Scholar 

  5. RK Ajeel WSIW Salim K Hasnan 2019 Influences of geometrical parameters on the heat transfer characteristics through symmetry trapezoidal-corrugated channel using SiO2-water nanofluid Int Commun Heat Mass Transfer 101 1 9 https://doi.org/10.1016/j.icheatmasstransfer.2018.12.016

    Article  CAS  Google Scholar 

  6. RK Ajeel WSIW Salim K Hasnan 2019 Design characteristics of symmetrical semicircle-corrugated channel on heat transfer enhancement with nanofluid Int J Mech Sci 151 236 250 https://doi.org/10.1016/j.ijmecsci.2018.11.022

    Article  Google Scholar 

  7. RK Ajeel WSIW Salim K Hasnan 2019 Experimental and numerical investigations of convection heat transfer in corrugated channels using alumina nanofluid under a turbulent flow regime Chem Eng Res Des 148 202 217 https://doi.org/10.1016/j.cherd.2019.06.003

    Article  CAS  Google Scholar 

  8. RK Ajeel W Saiful-Islam K Sopian MZ Yusoff 2020 Analysis of thermal-hydraulic performance and flow structures of nanofluids across various corrugated channels: an experimental and numerical study Therm Sci Eng Prog https://doi.org/10.1016/j.tsep.2020.100604

    Article  Google Scholar 

  9. RK Ajeel K Sopian R Zulkifli SN Fayyadh A Kareem Hilo 2021 Assessment and analysis of binary hybrid nanofluid impact on new configurations for curved-corrugated channel Adv Powder Technol 32 10 3869 3884 https://doi.org/10.1016/j.apt.2021.08.041

    Article  CAS  Google Scholar 

  10. RK Ajeel R Zulkifli K Sopian SN Fayyadh A Fazlizan A Ibrahim 2021 Numerical investigation of binary hybrid nanofluid in new configurations for curved-corrugated channel by thermal-hydraulic performance method Powder Technol 385 144 159 https://doi.org/10.1016/j.powtec.2021.02.055

    Article  CAS  Google Scholar 

  11. RK Ajeel 2019 Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: an experimental and numerical study Int J Heat Mass Transf https://doi.org/10.1016/j.ijheatmasstransfer.2019.118806

    Article  Google Scholar 

  12. IM Eldesoky SI Abdelsalam RM Abumandour MH Kamel K Vafai 2017 Interaction between compressibility and particulate suspension on peristaltically driven flow in planar channel Appl Math Mech 38 1 137 154 https://doi.org/10.1007/s10483-017-2156-6 English Edition

    Article  Google Scholar 

  13. M Faizan F Ali K Loganathan A Zaib CA Reddy SI Abdelsalam 2022 Entropy analysis of sutterby nanofluid flow over a riga sheet with gyrotactic microorganisms and cattaneo–christov double diffusion Mathematics https://doi.org/10.3390/math10173157

    Article  Google Scholar 

  14. Engineers R and A-C. American society of heating, 2009 Ashrae handbook : fundamentals. ASHRAE, 2009.

  15. TS Krishnakumar A Sheeba V Mahesh M Jose Prakash 2019 Heat transfer studies on ethylene glycol/water nanofluid containing TiO2 nanoparticles Int J Refrig 102 55 61 https://doi.org/10.1016/j.ijrefrig.2019.02.035

    Article  CAS  Google Scholar 

  16. V Kumaresan R Velraj SK Das 2012 Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger Int J Refrig 35 2287 2296 https://doi.org/10.1016/j.ijrefrig.2012.08.009

    Article  CAS  Google Scholar 

  17. WH Azmi KA Hamid NA Usri R Mamat KV Sharma 2016 Heat transfer augmentation of ethylene glycol: water nanofluids and applications—a review Int Commun Heat Mass Transf 75 13 23 https://doi.org/10.1016/j.icheatmasstransfer.2016.03.018

    Article  CAS  Google Scholar 

  18. W Rashmi AF Ismail M Khalid A Anuar T Yusaf 2014 Investigating corrosion effects and heat transfer enhancement in smaller size radiators using CNT-nanofluids J Mater Sci 49 13 4544 4551 https://doi.org/10.1007/s10853-014-8154-y

    Article  CAS  Google Scholar 

  19. SMS Murshed CA Nieto de Castro 2016 Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids—a review Appl Energy 184 681 695 https://doi.org/10.1016/j.apenergy.2016.11.017

    Article  CAS  Google Scholar 

  20. SI Abdelsalam MM Bhatti 2023 Unraveling the nature of nano-diamonds and silica in a catheterized tapered artery: highlights into hydrophilic traits Sci Rep 13 1 5684 https://doi.org/10.1038/s41598-023-32604-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. SI Abdelsalam KS Mekheimer AZ Zaher 2022 Dynamism of a hybrid Casson nanofluid with laser radiation and chemical reaction through sinusoidal channels Waves Random Complex Media https://doi.org/10.1080/17455030.2022.2058714

    Article  Google Scholar 

  22. V Sridhar K Ramesh M Gnaneswara Reddy MN Azese SI Abdelsalam 2022 On the entropy optimization of hemodynamic peristaltic pumping of a nanofluid with geometry effects Waves Random Complex Media https://doi.org/10.1080/17455030.2022.2061747

    Article  Google Scholar 

  23. K Balamurugan P Baskar R Mahesh Kumar S Das V Subramanian 2012 Interaction of carbon nanotube with ethylene glycol-water binary mixture: a molecular dynamics and density functional theory investigation J Phys Chem C 116 7 4365 4373 https://doi.org/10.1021/jp206882f

    Article  CAS  Google Scholar 

  24. Ghasempour R, Narei H. CNT basics and characteristics. In: Carbon nanotube-reinforced polymers: from nanoscale to macroscale, Elsevier; 2017. p. 1–24. https://doi.org/10.1016/B978-0-323-48221-9.00001-7.

  25. MNAWM Yazid NAC Sidik R Mamat G Najafi 2016 A review of the impact of preparation on stability of carbon nanotube nanofluids Int Commun Heat Mass Transf 78 253 263 https://doi.org/10.1016/j.icheatmasstransfer.2016.09.021

    Article  CAS  Google Scholar 

  26. F Yu 2017 Dispersion stability of thermal nanofluids Prog Nat Sci: Mater Int 27 5 531 542 https://doi.org/10.1016/j.pnsc.2017.08.010

    Article  CAS  Google Scholar 

  27. Babita SK Sharma SM Gupta 2016 Preparation and evaluation of stable nanofluids for heat transfer application: a review Exp Therm Fluid Sci 79 202 212 https://doi.org/10.1016/j.expthermflusci.2016.06.029

    Article  CAS  Google Scholar 

  28. Babita SK Sharma SM Gupta 2018 Synergic effect of SDBS and GA to prepare stable dispersion of CNT in water for industrial heat transfer applications Mater Res Express https://doi.org/10.1088/2053-1591/aac579

    Article  Google Scholar 

  29. P Yadav SM Gupta SK Sharma 2022 A review on stabilization of carbon nanotube nanofluid J Therm Anal Calorim 147 12 6537 6561 https://doi.org/10.1007/s10973-021-10999-6

    Article  CAS  Google Scholar 

  30. M Soltanimehr M Afrand 2016 Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems Appl Therm Eng 105 716 723 https://doi.org/10.1016/j.applthermaleng.2016.03.089

    Article  CAS  Google Scholar 

  31. F Izadi R Ranjbarzadeh R Kalbasi M Afrand 2018 A new experimental correlation for non-Newtonian behavior of COOH-DWCNTs/antifreeze nanofluid Phys E Low Dimens Syst Nanostruct 98 83 89 https://doi.org/10.1016/j.physe.2017.12.031

    Article  CAS  Google Scholar 

  32. A Kakavandi M Akbari 2018 Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation Int J Heat Mass Transf 124 742 751 https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.103

    Article  CAS  Google Scholar 

  33. MH Mirbagheri M Akbari B Mehmandoust 2018 Proposing a new experimental correlation for thermal conductivity of nanofluids containing of functionalized multiwalled carbon nanotubes suspended in a binary base fluid Int Commun Heat Mass Transfer 98 216 222 https://doi.org/10.1016/j.icheatmasstransfer.2018.09.007

    Article  CAS  Google Scholar 

  34. SR Yan D Toghraie LA Abdulkareem A Alizadeh P Barnoon M Afrand 2020 The rheological behavior of MWCNTs–ZnO/Water–Ethylene glycol hybrid non-Newtonian nanofluid by using of an experimental investigation J Market Res 9 4 8401 8406 https://doi.org/10.1016/j.jmrt.2020.05.018

    Article  CAS  Google Scholar 

  35. Y Zhu M Zamani G Xu D Toghraie M Hashemian A Alizadeh 2021 A comprehensive experimental investigation of dynamic viscosity of MWCNT-WO3/water-ethylene glycol antifreeze hybrid nanofluid J Mol Liq https://doi.org/10.1016/j.molliq.2021.115986

    Article  Google Scholar 

  36. M Irani M Afrand B Mehmandoust 2019 Curve fitting on experimental data of a new hybrid nano-antifreeze viscosity: presenting new correlations for non-Newtonian nanofluid Phys A: Stat Mech Appl https://doi.org/10.1016/j.physa.2019.04.073

    Article  Google Scholar 

  37. E Shahsavani M Afrand R Kalbasi 2018 Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes: a novel correlation for the non-Newtonian nanofluid J Therm Anal Calorim 131 2 1177 1185 https://doi.org/10.1007/s10973-017-6711-8

    Article  CAS  Google Scholar 

  38. A Akhgar D Toghraie 2018 An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation Powder Technol 338 806 818 https://doi.org/10.1016/j.powtec.2018.07.086

    Article  CAS  Google Scholar 

  39. H Bagheri A Ahmadi Nadooshan 2018 The effects of hybrid nano-powder of zinc oxide and multi walled carbon nanotubes on the thermal conductivity of an antifreeze Phys E Low Dimens Syst Nanostruct 103 361 366 https://doi.org/10.1016/j.physe.2018.06.017

    Article  CAS  Google Scholar 

  40. R Adhami Dehkordi M Hemmat Esfe M Afrand 2017 Effects of functionalized single walled carbon nanotubes on thermal performance of antifreeze: an experimental study on thermal conductivity Appl Therm Eng 120 358 366 https://doi.org/10.1016/j.applthermaleng.2017.04.009

    Article  CAS  Google Scholar 

  41. A Moradi M Zareh M Afrand M Khayat 2020 Effects of temperature and volume concentration on thermal conductivity of TiO2-MWCNTs (70–30)/EG-water hybrid nano-fluid Powder Technol 362 578 585 https://doi.org/10.1016/j.powtec.2019.10.008

    Article  CAS  Google Scholar 

  42. H Eshgarf M Afrand 2016 An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems Exp Therm Fluid Sci 76 221 227 https://doi.org/10.1016/j.expthermflusci.2016.03.015

    Article  CAS  Google Scholar 

  43. M Hemmat Esfe S Alidoust SN Hosseini Tamrabad D Toghraie H Hatami 2023 Thermal conductivity of MWCNT-TiO2/Water-EG hybrid nanofluids: Calculating the price performance factor (PPF) using statistical and experimental methods (RSM) Case Stud Therm Eng 48 103094 https://doi.org/10.1016/j.csite.2023.103094

    Article  Google Scholar 

  44. IM Mahbubul 2014 Effect of ultrasonication duration on colloidal structure and viscosity of alumina-water nanofluid Ind Eng Chem Res 53 16 6677 6684 https://doi.org/10.1021/ie500705j

    Article  CAS  Google Scholar 

  45. RA Farade 2021 Investigation of the effect of sonication time on dispersion stability, dielectric properties, and heat transfer of graphene based green nanofluids IEEE Access 9 50607 50623 https://doi.org/10.1109/ACCESS.2021.3069282

    Article  Google Scholar 

  46. KS Suganthi KS Rajan 2014 A formulation strategy for preparation of ZnO-Propylene glycol-water nanofluids with improved transport properties Int J Heat Mass Transf 71 653 663 https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.044

    Article  CAS  Google Scholar 

  47. BC Pak YI Cho 1998 Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles Exp Heat Transf 11 2 151 170 https://doi.org/10.1080/08916159808946559

    Article  CAS  Google Scholar 

  48. S Javadian A Motaee M Sharifi H Aghdastinat F Taghavi 2017 Dispersion stability of multi-walled carbon nanotubes in catanionic surfactant mixtures Colloids Surf A Physicochem Eng Asp 531 141 149 https://doi.org/10.1016/j.colsurfa.2017.07.081

    Article  CAS  Google Scholar 

  49. H Sandhu D Gangacharyulu 2017 An experimental study on stability and some thermophysical properties of multiwalled carbon nanotubes with water–ethylene glycol mixtures Part Sci Technol 35 5 547 554 https://doi.org/10.1080/02726351.2016.1180335

    Article  CAS  Google Scholar 

  50. Ilyas SU, Pendyala R, Marneni N. Stability of Nanofluids. In: Topics in mining, metallurgy and materials engineering, Springer Science and Business Media Deutschland GmbH, 2017, p. 1–31. https://doi.org/10.1007/978-3-319-29761-3_1.

  51. S Chakraborty PK Panigrahi 2020 Stability of nanofluid: a review Appl Therm Eng https://doi.org/10.1016/j.applthermaleng.2020.115259

    Article  Google Scholar 

  52. SU Ilyas R Pendyala M Narahari 2017 Stability and thermal analysis of MWCNT-thermal oil-based nanofluids Colloids Surf A Physicochem Eng Asp 527 11 22 https://doi.org/10.1016/j.colsurfa.2017.05.004

    Article  CAS  Google Scholar 

  53. MR Esfahani EM Languri MR Nunna 2016 Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid Int Commun Heat Mass Transfer 76 308 315 https://doi.org/10.1016/j.icheatmasstransfer.2016.06.006

    Article  CAS  Google Scholar 

  54. A Ali 2020 Dynamic viscosity of Titania nanotubes dispersions in ethylene glycol/water-based nanofluids: experimental evaluation and predictions from empirical correlation and artificial neural network Int Commun Heat Mass Transf https://doi.org/10.1016/j.icheatmasstransfer.2020.104882

    Article  Google Scholar 

  55. N Gupta SM Gupta SK Sharma 2021 Synthesis, characterization and dispersion stability of water-based Cu–CNT hybrid nanofluid without surfactant Microfluid Nanofluidics https://doi.org/10.1007/s10404-021-02421-2

    Article  PubMed  PubMed Central  Google Scholar 

  56. SSJ Aravind P Baskar TT Baby RK Sabareesh S Das S Ramaprabhu 2011 Investigation of structural stability, dispersion, viscosity, and conductive heat transfer properties of functionalized carbon nanotube based nanofluids J Phys Chem C 115 34 16737 16744 https://doi.org/10.1021/jp201672p

    Article  CAS  Google Scholar 

  57. J Ganeshkumar D Kathirkaman K Raja V Kumaresan R Velraj 2017 Experimental study on density, thermal conductivity, specific heat, and viscosity of water-ethylene glycol mixture dispersed with carbon nanotubes Therm Sci 21 1 255 265 https://doi.org/10.2298/tsci141015028g

    Article  Google Scholar 

  58. KS Suganthi V Leela Vinodhan KS Rajan 2014 Heat transfer performance and transport properties of ZnO-ethylene glycol and ZnO-ethylene glycol-water nanofluid coolants Appl Energy 135 548 559 https://doi.org/10.1016/j.apenergy.2014.09.023

    Article  CAS  Google Scholar 

  59. KS Suganthi M Parthasarathy KS Rajan 2013 Liquid-layering induced, temperature-dependent thermal conductivity enhancement in ZnO-propylene glycol nanofluids Chem Phys Lett 561–562 120 124 https://doi.org/10.1016/j.cplett.2013.01.044

    Article  CAS  Google Scholar 

  60. A Bin Yousaf M Khan M Imran M Usman MA Jamal 2014 Influence of particle size on density, ultrasonic velocity and viscosity of magnetite nanofluids at different temperatures NANO https://doi.org/10.1142/S1793292014500891

    Article  Google Scholar 

  61. MH Ahmadi A Mirlohi M Alhuyi Nazari R Ghasempour 2018 A review of thermal conductivity of various nanofluids J Mol Liq 265 181 188 https://doi.org/10.1016/j.molliq.2018.05.124

    Article  CAS  Google Scholar 

  62. J Lee H Lee YJ Baik J Koo 2015 Quantitative analyses of factors affecting thermal conductivity of nanofluids using an improved transient hot-wire method apparatus Int J Heat Mass Transf 89 116 123 https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.064

    Article  CAS  Google Scholar 

  63. Hays A, et al. The effect of nanoparticle agglomeration on enhanced nanofluidic thermal conductivity, 2006. [Online]. Available: http://docs.lib.purdue.edu/iracc/829.

  64. J Zhang P Zhang K Ma F Han G Chen X Wei 2008 Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study Sci China B Chem 51 5 420 426 https://doi.org/10.1007/s11426-008-0045-0

    Article  CAS  Google Scholar 

  65. YC Guo C Cai YH Zhang 2018 Observation of conformational changes in ethylene glycol-water complexes by FTIR-ATR spectroscopy and computational studies AIP Adv https://doi.org/10.1063/1.4995975

    Article  Google Scholar 

  66. NR Babij 2016 NMR chemical shifts of trace impurities industrially preferred solvents used in process and green chemistry Org Process Res Dev 20 3 661 667 https://doi.org/10.1021/acs.oprd.5b00417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is financially supported by GGSIP University, New Delhi, India, under FRGS

Funding

FRGS,2022/1223/4,SHIPRA MITAL GUPTA

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shipra Mital Gupta.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Gupta, S.M. & Sharma, S.K. Preparation and characterization of surfactant-free CNT based nanofluid in EG/water (60:40 ratio) basefluid for refrigerant application. J Therm Anal Calorim 148, 10037–10050 (2023). https://doi.org/10.1007/s10973-023-12376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12376-x

Keywords

Navigation