Skip to main content
Log in

The effect of oxygen defects in Cu2O1−x nanocatalyst on the catalytic thermal decomposition of ammonium perchlorate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The oxygen vacancy defect engineering has been demonstrated as a promising method to modify the physical and chemical properties of semiconductor materials, but it is rarely used in combustion catalyst. Herein, the effect of oxygen defects in a novel Cu2O1−x nanocombustion catalyst on the thermal decomposition properties and kinetics of AP was studied by differential scanning calorimetry (DSC) and thermogravimetry (TG) analysis for the first time. Density functional theory (DFT) calculations were employed to elucidate the oxygen defect effects and catalytic mechanism by investigating the changes in adsorption energies of NH3 and its split products on the catalyst surfaces induced by oxygen vacancy defects. The results show that the Cu2O1−x with abundant oxygen vacancy defects exhibited enhanced catalytic activity for the AP thermal decomposition. Also, the kinetic parameters of AP thermal decomposition with and without cuprous oxide nanocatalysts were obtained by Kissinger’s method. With the addition of Cu2O1−x, the exothermic peak temperature and apparent activation energy of AP in high-temperature decomposition stage were respectively reduced by 104.6 °C and 71.6 kJ mol−1, which are higher than those of Cu2O (90.1 °C and 54.6 kJ mol−1), showing significant oxygen defect effects. DFT calculations found that the oxygen vacancy defects on the Cu2O1−x nanocatalyst surface can promote the adsorption and complete oxidation of NH3, which may adsorb on the surface of AP and restrain its thermal decomposition during low-temperature decomposition process.

Graphical abstract

Oxygen-deficient Cu2O1−x nanoparticles have been prepared and firstly used as combustion catalyst. The effect of oxygen defects in a novel Cu2O1−x nanocombustion catalyst on the thermal decomposition properties and kinetics of AP was investigated by DSC and TG analysis techniques for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meda L, Marra G, Galfetti L, Inchingalo S, Severini F, De LL. Nano-composites for rocket solid propellants. Compos Sci Technol. 2005;65:769–73. https://doi.org/10.1016/j.compscitech.2004.10.016.

    Article  CAS  Google Scholar 

  2. Zhang M, Zhao F, Li H, Dong S, Yang Y, Hou X, An T, Jiang Z. Ferrocene functionalized graphene: preparation, characterization and application as an efficient catalyst for the thermal decomposition of TKX-50. Phys Chem Chem Phys. 2021;23:17567–75. https://doi.org/10.1039/D1CP02777H.

    Article  CAS  PubMed  Google Scholar 

  3. Wang J, Wang W, Wang J, Xu K. In situ synthesis of MgWO4-GO nanocomposites and their catalytic effect on the thermal decomposition of HMX, RDX and AP. Carbon Lett. 2020;30:425–34. https://doi.org/10.1007/s42823-019-00112-1.

    Article  Google Scholar 

  4. Li HB, Zhao XQ, Wu WQ, Li SR, Chen LP, Chen WH. Experimental research on multistep decomposition kinetics of ammonium perchlorate in the space-confined environment. J Therm Anal Calorim. 2022;147(20):11535–47. https://doi.org/10.1007/s10973-022-11310-x.

    Article  CAS  Google Scholar 

  5. Dave PN, Sirach R. NiZnFe2O4: a potential catalyst for the thermal decomposition of AP and burn rate modifier for AP/HTPB based propellants. J Therm Anal Calorim. 2022;147(20):10999. https://doi.org/10.1007/s10973-022-11305-8.

    Article  CAS  Google Scholar 

  6. Heng B, Xiao T, Hu X, Yuan M, Tao W, Huang W, Tang Y. Catalytic activity of Cu2O micro-particles with different morphologies in the thermal decomposition of ammonium perchlorate. Thermochim Acta. 2011;524:135–9. https://doi.org/10.1016/j.tca.2011.07.004.

    Article  CAS  Google Scholar 

  7. Luo XL, Wang MJ, Yun L, Yang J, Chen Y. Structure-dependent activities of Cu2O cubes in thermal decomposition of ammonium perchlorate. J Phys Chem Solids. 2016;90:1–6. https://doi.org/10.1016/j.jpcs.2015.11.005.

    Article  CAS  Google Scholar 

  8. Sivadas DL, Thomas D, Haseena MS, Jayalatha T, Krishnan GR, Jacob S, Rajeev R. Insight into the catalytic thermal decomposition mechanism of ammonium perchlorate: TG-MS study using cotton-assisted hydrothermally synthesized nano copper oxide catalyst. J Therm Anal Calorim. 2019;138:1–10. https://doi.org/10.1007/s10973-019-08209-5.

    Article  CAS  Google Scholar 

  9. Chandrababu P, Cheriyan S, Raghavan R. Aloe vera leaf extract-assisted facile green synthesis of amorphous Fe2O3 for catalytic thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2020;139:89–99. https://doi.org/10.1007/s10973-019-08376-5.

    Article  CAS  Google Scholar 

  10. Zhao Y, Zhang X, Xu X, Zhao Y, Zhou H, Li J, Jin HB. Synthesis of NiO nanostructures and their catalytic activity in the thermal decomposition of ammonium perchlorate. CrystEngComm. 2016;18:4836–43. https://doi.org/10.1039/C6CE00627B.

    Article  CAS  Google Scholar 

  11. Zhou L, Cao S, Zhang L, Xiang G, Wang J, Zeng X, Chen J. Facet effect of Co3O4 nanocatalysts on the catalytic decomposition of ammonium perchlorate. J Hazard Mater. 2020;392:122358. https://doi.org/10.1016/j.jhazmat.2020.122358.

    Article  CAS  PubMed  Google Scholar 

  12. Hosseini SG, Toloti SJH, Babaei K, Ghavi A. The effect of average particle size of nano-Co3O4 on the catalytic thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;124:1243–54. https://doi.org/10.1007/s10973-016-5333-x.

    Article  CAS  Google Scholar 

  13. Mahdavi M, Farrokhpour H, Tahriri M. Investigation of simultaneous formation of nano-sized CuO and ZnO on the thermal decomposition of ammonium perchlorate for composite solid propellants. J Therm Anal Calorim. 2018;132:879–93. https://doi.org/10.1007/s10973-018-7018-0.

    Article  CAS  Google Scholar 

  14. Chen T, Hu Y, Zhang C, Gao Z. Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate. Def Technol. 2021;17:1471–85. https://doi.org/10.1016/j.dt.2020.08.004.

    Article  Google Scholar 

  15. Hu Y, Yang S, Tao B, Liu X, Lin K, Yang Y, Fan R, Xia D, Hao D. Catalytic decomposition of ammonium perchlorate on hollow mesoporous CuO microspheres. Vacuum. 2019;159:105–11. https://doi.org/10.1016/j.vacuum.2018.10.020.

    Article  CAS  Google Scholar 

  16. Luo XL, Yang DS, Yuan CL, Luo XM, Chen YS. Catalytic performance of polycrystalline Cu2O with different structures on the thermal decomposition of ammonium perchlorate. Acta Phys-Chim Sin. 2014;30:520–6. https://doi.org/10.3866/PKU.WHXB201401061.

    Article  CAS  Google Scholar 

  17. Yue Q, Liu C, Wan Y, Wu X, Zhang X, Du P. Defect engineering of mesoporous nickel ferrite and its application for highly enhanced water oxidation catalysis. J catal. 2018;358:1–7. https://doi.org/10.1016/j.jcat.2017.10.027.

    Article  CAS  Google Scholar 

  18. Zu D, Wang H, Lin S, Ou G, Wei H, Sun S, Wu H. Oxygen-deficient metal oxides: synthesis routes and applications in energy and environment. Nano Res. 2019;12:2150–63. https://doi.org/10.1007/s12274-019-2377-9.

    Article  CAS  Google Scholar 

  19. Lu QL, Zhao SX, Chen CK, Wang X, Deng YF, Nan CW. A novel pseudocapacitance mechanism of elm seed-like mesoporous MoO3−x nanosheets as electrodes for supercapacitors. J Mater Chem A. 2016;4:14560–6. https://doi.org/10.1039/C6TA06326H.

    Article  CAS  Google Scholar 

  20. Wang H, Lee HW, Deng Y, Lu Z, Hsu PC, Liu Y, Lin D, Cui Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat commun. 2015;6:1–8. https://doi.org/10.1038/ncomms8261.

    Article  CAS  Google Scholar 

  21. Zhang M, Zhao F, Li H, Yang Y, An T, Jiang Y, Li N. Morphology-dependent catalytic activity of Fe2O3 and its graphene-based nanocomposites on the thermal decomposition of AP. FirePhysChem. 2021;1:46–53. https://doi.org/10.1016/j.fpc.2021.02.002.

    Article  Google Scholar 

  22. Li D, Li J, Qin L, Hu Y, Gong T, Zhang W, Hui L, Feng H. H-titanate nanotube supported Fe2O3 nanoparticles for enhancing the thermal decomposition of ammonium perchlorate: the superb catalytic activity of interface sites. Appl Surf Sci. 2021. https://doi.org/10.1016/j.apsusc.2021.150207.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–86. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  CAS  Google Scholar 

  25. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–71. https://doi.org/10.1103/PhysRev.136.B864.

    Article  Google Scholar 

  26. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–8. https://doi.org/10.1103/PhysRev.140.A1133.

    Article  Google Scholar 

  27. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–79. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Kong W, Qin X, Qu F, Lu L. Self-powered cathodic photoelectrochemical aptasensor based on in situ-synthesized CuO-Cu2O nanowire array for detecting prostate-specific antigen. Microchim Acta. 2020;187:1–9. https://doi.org/10.1007/s00604-020-04277-9.

    Article  CAS  Google Scholar 

  30. Majeed I, Nadeem MA, Badshah A, Kanodarwala FK, Ali H, Khan MA, Stride JA, Nadeem MA. Titania supported MOF-199 derived Cu-Cu2O nanoparticles: highly efficient non-noble metal photocatalysts for hydrogen production from alcohol-water mixtures. Catal Sci Technol. 2017;7:677–86. https://doi.org/10.1039/C6CY02328B.

    Article  CAS  Google Scholar 

  31. Katal R, Masudy-Panah S, Sabbaghan M, Hossaini Z, Farahani MHDA. Photocatalytic degradation of triclosan by oxygen defected CuO thin film. Sep Purif Technol. 2020;250:117239. https://doi.org/10.1016/j.seppur.2020.117239.

    Article  CAS  Google Scholar 

  32. Singh M, Jampaiah D, Kandjani AE, Sabri YM, Gaspera ED, Reineck P, Judd M, Langley J, Cox N, Embden JV, Mayes ELH, Gibson BC, Bhargava SK, Ramanathan R, Bansal V. Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity. Nanoscale. 2018;10:6039–50. https://doi.org/10.1039/C7NR08388B.

    Article  CAS  PubMed  Google Scholar 

  33. Bo Y, Wang H, Lin Y, Yang T, Ye R, Li Y, Hu C, Du P, Hu Y, Liu Z, Long R, Gao C, Ye B, Song L, Wu X, Xiong Y. Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant. Angew Chem Int Ed. 2021;60(29):16085–92. https://doi.org/10.1002/anie.202104001.

    Article  CAS  Google Scholar 

  34. John S, Roy SC. CuO/Cu2O nanoflake/nanowire heterostructure photocathode with enhanced surface area for photoelectrochemical solar energy conversion. Appl Surf Sci. 2020;509:144703. https://doi.org/10.1016/j.apsusc.2019.144703.

    Article  CAS  Google Scholar 

  35. Debbichi L, Marco de Lucas MC, Pierson JF, Krüger P. Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. J Phys Chem C. 2012;116:10232–7. https://doi.org/10.1021/jp303096m.

    Article  CAS  Google Scholar 

  36. Lin J, Shang Y, Li X, Yu J, Wang X, Guo L. Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv Mater. 2017;29:1604797. https://doi.org/10.1002/adma.201604797.

    Article  CAS  Google Scholar 

  37. Mao Y, He J, Sun X, Li W, Lu X, Gan J, Liu Z, Gong L, Chen J, Liu P, Tong Y. Electrochemical synthesis of hierarchical Cu2O stars with enhanced photoelectrochemical properties. Electrochim Acta. 2012;62:1–7. https://doi.org/10.1016/j.electacta.2011.10.106.

    Article  CAS  Google Scholar 

  38. Wu S, Yin Z, He Q, Lu G, Zhou X, Zhang H. Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes. J Mater Chem. 2011;21:3467–70. https://doi.org/10.1039/c0jm02267e.

    Article  CAS  Google Scholar 

  39. Peng YK, Tsang SCE. Facet-dependent photocatalysis of nanosize semiconductive metal oxides and progress of their characterization. Nano Today. 2018;18:15–34. https://doi.org/10.1016/j.nantod.2017.12.011.

    Article  CAS  Google Scholar 

  40. Jiang B, Zhang W, Yang J, Yu Y, Bao T, Zhou X. Low-temperature oxidation of catocene and its influence on the mechanical sensitivities of a fine-AP/catocene mixture. Propellants Explos Pyrotech. 2015;40:854–9. https://doi.org/10.1002/prep.201500099.

    Article  CAS  Google Scholar 

  41. Mahdavi M, Farrokhpour H, Tahriri M. In situ formation of MxOy nano-catalysts (M= Mn, Fe) to diminish decomposition temperature and enhance heat liberation of ammonium perchlorate. Mater Chem Phys. 2017;196:9–20. https://doi.org/10.1016/j.matchemphys.2017.04.038.

    Article  CAS  Google Scholar 

  42. Yan N, Qin L, Li J, Zhao F, Feng H. Atomic layer deposition of iron oxide on reduced graphene oxide and its catalytic activity in the thermal decomposition of ammonium perchlorate. Appl Surf Sci. 2018;451:155–61. https://doi.org/10.1016/j.apsusc.2018.04.247.

    Article  CAS  Google Scholar 

  43. Li N, Geng Z, Cao M, Ren L, Zhao X, Liu B, Tian Y, Hu C. Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon. 2013;54:124–32. https://doi.org/10.1016/j.carbon.2012.11.009.

    Article  CAS  Google Scholar 

  44. Chen Y, Ma K, Wang J, Gao Y, Zhu X, Zhang W. Catalytic activities of two different morphological nano-MnO2 on the thermal decomposition of ammonium perchlorate. Mater Res Bull. 2018;101:56–60. https://doi.org/10.1016/j.materresbull.2018.01.013.

    Article  CAS  Google Scholar 

  45. Liu J, Tian D, Deng P. Effect of superfine Cu2O powder on the thermal decomposition characteristics of components of RDX/AP/HTPB propellants. Chin J Explos Propellants (Huozhayao Xuebao) 1998;2.

  46. Zhang Y, Gao S. Synthesis of Cu2O@MWCNTs composites and its catalytic performance on the thermal decomposition of ammonium perchlorate. J Anhui Univ Sci Technol (Nat Sci). 2022;42:3.

    CAS  Google Scholar 

  47. Yan J, Wang H, Jin B, Zeng M, Peng R. Cu-MOF derived Cu/Cu2O/C nanocomposites for the efficient thermal decomposition of ammonium perchlorate. J Solid State Chem. 2021;297:122060. https://doi.org/10.1016/j.jssc.2021.122060.

    Article  CAS  Google Scholar 

  48. Luo XL, Wang MJ, Yang DS, Yang J, Chen YS. Hydrothermal synthesis of morphology controllable Cu2O and their catalysis in thermal decomposition of ammonium perchlorate. J Ind Eng Chem. 2015;32:313–8. https://doi.org/10.1016/j.jiec.2015.09.015.

    Article  CAS  Google Scholar 

  49. Gao Y, Wang L, Li Z, Zhou A, Hu Q, Cao X. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;35:62–5. https://doi.org/10.1016/j.solidstatesciences.2014.06.014.

    Article  CAS  Google Scholar 

  50. Lv TT, Wang HX, Ren XB, Wang LC, Ding RM, Cao JP, Lv BL. Protection of highly active sites on Cu2O nanocages: an efficient crystalline catalyst for ammonium perchlorate decomposition. CrystEngComm. 2020;22:8214–20. https://doi.org/10.1039/D0CE01418D.

    Article  CAS  Google Scholar 

  51. Lv TT, Xing HZ, Yang HM, Wang HX, Shi J, Cao JP, Lv BL. Rapid synthesis of Cu2O hollow spheres at low temperature and their catalytic performance for the decomposition of ammonium perchlorate. CrystEngComm. 2021;23:7985–93. https://doi.org/10.1039/D1CE00663K.

    Article  CAS  Google Scholar 

  52. Ramdani Y, Liu Q, Huiquan G, Liu P, Zegaoui A, Wang J. Synthesis and thermal behavior of Cu2O flower-like, Cu2O-C60 and Al/Cu2O-C60 as catalysts on the thermal decomposition of ammonium perchlorate. Vacuum. 2018;153:277–90. https://doi.org/10.1016/j.vacuum.2018.04.030.

    Article  CAS  Google Scholar 

  53. Hu Y, Yang Y, Fan R, Lin K, Hao D, Xia D, Wang P. Enhanced thermal decomposition properties and catalytic mechanism of ammonium perchlorate over CuO/MoS2 composite. Appl Organomet Chem. 2019;33:e5060. https://doi.org/10.1002/aoc.5060.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the National Natural Science Foundation of China (Grant Number: 21173163 and 21503163) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this work. YJ did most of the experiments and wrote the main part of the manuscript. FZ provided guidance for experiments and manuscript writing. MZ and HL assisted in the catalytic performance evaluation and kinetic analysis of the oxygen-deficient Cu2O1−x nanocombustion catalyst toward the AP thermal decomposition. HL and ZQ participated in the synthesis and characterization of oxygen-deficient Cu2O1−x nanocatalyst. JZ contributed to the study and reviewed the manuscript.

Corresponding author

Correspondence to Fengqi Zhao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhao, F., Zhang, M. et al. The effect of oxygen defects in Cu2O1−x nanocatalyst on the catalytic thermal decomposition of ammonium perchlorate. J Therm Anal Calorim 148, 9979–9992 (2023). https://doi.org/10.1007/s10973-023-12369-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12369-w

Keywords

Navigation