Skip to main content
Log in

Bio-based epoxy/polyurethane interpenetrating polymer networks (IPNs) derived from plant oils with tunable thermal and mechanical properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Bio-based interpenetrating polymer networks (IPNs) with tunable thermal and mechanical properties were prepared by bio-based polyurethane (PU) and epoxy resin (EP) derived from plant oils. The cure reaction, dynamic mechanical properties, thermal stability, mechanical performance and morphology of bio-based PU/EP IPNs were characterized by Fourier transform infrared spectroscopy, dynamic mechanical analysis, thermogravimetry, universal test machine and scanning electron microscopy. Dynamic modulus, glass transition temperature, thermal stability and tensile strength of bio-based EP/PU IPNs decreased in the content of soybean oil-based PU prepolymers. However, the damping properties of bio-based EP/PU IPNs increased in the content of soybean oil-based PU prepolymers. The elongation at break of bio-based EP/PU IPNs was greatly higher than that of the plant oil-based EP. The elongation at break of the bio-based EP/PU IPN containing 20% soybean oil-based PU prepolymer was fourfold higher than that of the plant oil-based EP. Soybean oil-based PU prepolymer significantly improved the damping properties and the elongation at break of the plant oil-based EP. By adjusting the mass ratio of the plant oil-based EP to the soybean oil-based PU, the glass transition temperature, damping and mechanical properties of bio-based PU/EP IPNs can be optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Madbouly SA, Kessler MR. Preparation of nanoscale semi-IPNs with an interconnected microporous structure via cationic polymerization of bio-based tung oil in a homogeneous solution of poly(ε-caprolactone). ACS Omega. 2020;5(17):9977–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang E, Miao S, Zhong J, Zhang Z, Mills DK, Zhang LG. Bio-based polymers for 3D printing of bioscaffolds. Polym Rev. 2018;58(4):668–87.

    CAS  Google Scholar 

  3. Avella M, Buzarovska A, Errico ME, Gentile G, Grozdanov A. Eco-challenges of bio-based polymer composites. Materials. 2009;2(3):911–25.

    CAS  PubMed Central  Google Scholar 

  4. Wang R, Schuman TP. Vegetable oil-derived epoxy monomers and polymer blends: a comparative study with review. Express Polym Lett. 2013;7(3):272–92.

    Google Scholar 

  5. Reichert CL, Bugnicourt E, Coltelli M-B, Cinelli P, Lazzeri A, Canesi I, et al. Bio-based packaging: Materials, modifications, industrial applications and sustainability. Polymers. 2020;12(7):1558.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mohanty AK, Wu F, Mincheva R, Hakkarainen M, Raquez J-M, Mielewski DF, et al. Sustainable polymers. Nat Rev Methods Primers. 2022;2(1):46.

    CAS  Google Scholar 

  7. Gandini A, Lacerda TM. Polymers from Plant Oils. 2nd ed. Beverly: Scrivener Publishing LLC; 2019.

    Google Scholar 

  8. Madbouly S, Zhang C, Kessler MR. Bio-based Plant Oil Polymers and Composites. Oxford: William Andrew; 2015.

    Google Scholar 

  9. Silva JAC, Grilo LM, Gandini A, Lacerda TM. The prospering of macromolecular materials based on plant oils within the blooming field of polymers from renewable resources. Polymers. 2021;13(11):1722.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Miao S, Zhang S, Su Z, Wang P. Plant Oil-Based Polymers: Candidate Biomaterials. In: Mishra M, editor. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials, 11, vol. Set. Boca Raton: CRC Press; 2015. p. 6018–30.

    Google Scholar 

  11. Wang C, Wu Q, Liu F, An J, Lu R, Xie H, et al. Synthesis and characterization of soy polyol-based polyurethane nanocomposites reinforced with silylated palygorskite. Appl Clay Sci. 2014;101:246–52.

    CAS  Google Scholar 

  12. Xie H, Li C, Wang Q. A critical review on performance and phase separation of thermosetting epoxy asphalt binders and bond coats. Constr Build Mater. 2022;326:126792.

    CAS  Google Scholar 

  13. Xia Y, Larock RC. Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem. 2010;12(11):1893–909.

    CAS  Google Scholar 

  14. Baroncini EA, Kumar Yadav S, Palmese GR, Stanzione JF. Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. J Appl Polym Sci. 2016;133(45):44103.

    Google Scholar 

  15. Jing F, Zhao R, Li C, Xi Z, Wang Q, Xie H. Influence of the epoxy/acid stoichiometry on the cure behavior and mechanical properties of epoxy vitrimers. Molecules. 2022;27(19):6335.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem Rev. 2007;107(6):2411–502.

    CAS  PubMed  Google Scholar 

  17. Altuna F, Hoppe C, Williams R. Epoxy vitrimers: The effect of transesterification reactions on the network structure. Polymers. 2018;10(1):43.

    PubMed  PubMed Central  Google Scholar 

  18. Hayashi M. Implantation of recyclability and healability into cross-linked commercial polymers by applying the vitrimer concept. Polymers. 2020;12(6):1322.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding C, Shuttleworth PS, Makin S, Clark JH, Matharu AS. New insights into the curing of epoxidized linseed oil with dicarboxylic acids. Green Chem. 2015;17(7):4000–8.

    CAS  Google Scholar 

  20. Pradhan S, Pandey P, Mohanty S, Nayak SK. Synthesis and characterization of waterborne epoxy derived from epoxidized soybean oil and bioderived C-36 dicarboxylic acid. J Coat Technol Res. 2017;14(4):915–26.

    CAS  Google Scholar 

  21. Sperling LH, Hu R. Interpenetrating Polymer Networks. In: Utracki LA, Wilkie CA, editors. Polymer Blends Handbook. Netherlands: Springer; 2014. p. 677–724.

    Google Scholar 

  22. Mathew AP. Interpenetrating Polymer Networks: Processing, Properties and Applications. In: Visakh PM, Thomas S, Chandra AK, Mathew AP, editors. Advances in Elastomers I: Blends and Interpenetrating Networks. Berlin: Springer; 2013. p. 283–301.

    Google Scholar 

  23. Mathew AP, Thomas S. Izod impact behavior of natural rubber/polystyrene interpenetrating polymer networks. Mater Lett. 2001;50(2–3):154–63.

    CAS  Google Scholar 

  24. Lv X, Huang Z, Huang C, Shi M, Gao G, Gao Q. Damping properties and the morphology analysis of the polyurethane/epoxy continuous gradient IPN materials. Compos B. 2016;88:139–49.

    CAS  Google Scholar 

  25. Chern YC, Tseng SM, Hsieh KH. Damping properties of interpenetrating polymer networks of polyurethane-modified epoxy and polyurethanes. J Appl Polym Sci. 1999;74(2):328–35.

    CAS  Google Scholar 

  26. Wang C, Wang Y, Liu W, Yin H, Yuan Z, Wang Q, et al. Natural fibrous nanoclay reinforced soy polyol-based polyurethane. Mater Lett. 2012;78:85–7.

    CAS  Google Scholar 

  27. Li Y, Luo X, Hu S. Bio-based Polyols and Polyurethanes. Cham: Springer; 2015.

    Google Scholar 

  28. Garrison TF, Kessler MR. Plant oil-based polyurethanes Bio-based plant oil polymers and composites. Oxford: Elsevier; 2015.

    Google Scholar 

  29. Sreehari H, Gopika V, Jayan JS, Sethulekshmi AS, Appukuttan S. A comprehensive review on bio epoxy based IPN: Synthesis, properties and applications. Polymer. 2022;252:124950.

    CAS  Google Scholar 

  30. Chen S, Wang Q, Wang T. Damping, thermal, and mechanical properties of carbon nanotubes modified castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater Des. 2012;38:47–52.

    Google Scholar 

  31. Chen S, Wang Q, Wang T. Physical properties of aramid fiber reinforced castor oil-based polyurethane/epoxy resin IPN composites. J Reinf Plast Compos. 2013;32(15):1136–42.

    Google Scholar 

  32. Deka H, Karak N. Shape-memory property and characterization of epoxy resin-modified Mesua ferrea L. seed oil-based hyperbranched polyurethane. J Appl Polym Sci. 2010;116(1):106–15.

    CAS  Google Scholar 

  33. Yin H, Jin H, Wang C, Sun Y, Yuan Z, Xie H, et al. Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J Therm Anal Calorim. 2014;115(2):1073–80.

    CAS  Google Scholar 

  34. Xu K, Chen R, Wang C, Sun Y, Zhang J, Liu Y, et al. Organomontmorillonite-modified soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs). J Therm Anal Calorim. 2016;126:1253–60.

    CAS  Google Scholar 

  35. Xu K, Li C, Wang C, Jiang Y, Liu Y, Xie H. Natural and acid-treated attapulgite reinforced soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks. J Therm Anal Calorim. 2019;137(4):1189–98.

    CAS  Google Scholar 

  36. Wang C, Chen X, Xie H, Cheng R. Effects of carbon nanotube diameter and functionality on the properties of soy polyol-based polyurethane. Compos Part A Appl Sci Manuf. 2011;42(11):1620–6.

    Google Scholar 

  37. Adhvaryu A, Erhan SZ. Epoxidized soybean oil as a potential source of high-temperature lubricants. Ind Crops Prod. 2002;15(3):247–54.

    CAS  Google Scholar 

  38. Jin H, Zhang Y, Wang C, Sun Y, Yuan Z, Pan Y, et al. Thermal, mechanical, and morphological properties of soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs). J Therm Anal Calorim. 2014;117(2):773–81.

    CAS  Google Scholar 

  39. Zhao R, Jing F, Wang R, Cai J, Zhang J, Wang Q, et al. Influence of oligomer content on viscosity and dynamic mechanical properties of epoxy asphalt binders. Constr Build Mater. 2022;338:127524.

    CAS  Google Scholar 

  40. Zhang J, Su W, Liu Y, Gong J, Xi Z, Zhang J, et al. Laboratory investigation on the microstructure and performance of SBS modified epoxy asphalt binder. Constr Build Mater. 2021;270:121378.

    CAS  Google Scholar 

  41. Chen S, Wang Q, Pei X, Wang T. Dynamic mechanical properties of castor oil-based polyurethane/epoxy graft interpenetrating polymer network composites. J Appl Polym Sci. 2010;118(2):1144–51.

    CAS  Google Scholar 

  42. Chen R, Zhao R, Liu Y, Cai J, Xi Z, Zhang J, et al. Development of eco-friendly fire-retarded warm-mix epoxy asphalt binders using reactive polymeric flame retardants for road tunnel pavements. Constr Build Mater. 2021;284:122752.

    CAS  Google Scholar 

  43. Krongauz VV. Diffusion in polymers dependence on crosslink density. J Therm Anal Calorim. 2010;102(2):435–45.

    CAS  Google Scholar 

  44. Menard KP, Menard NR. Dynamic Mechanical Analysis. 3rd ed. Boca Raton: CRC Press; 2020.

    Google Scholar 

  45. Li C, Han X, Gong J, Su W, Xi Z, Zhang J, et al. Impact of waste cooking oil on the viscosity, microstructure and mechanical performance of warm-mix epoxy asphalt binder. Constr Build Mater. 2020;251:118994.

    CAS  Google Scholar 

  46. Sun Y, Liu Y, Gong J, Han X, Xi Z, Zhang J, et al. Thermal and bonding properties of epoxy asphalt bond coats. J Therm Anal Calorim. 2022;147(3):2013–25.

    CAS  Google Scholar 

  47. Yao S. Means to widen the temperature range of high damping behavior by IPN formation. In: Klempner D, Frisch KC, editors. Advances in interpenetrating polymer networks. Lancaster: Technomic Publishing Company; 1994. p. 243–86.

    Google Scholar 

  48. Chakraborty BC, Ratna D. Polymers for vibration damping applications. Amsterdam: Elsevier; 2020.

    Google Scholar 

  49. Jutrzenka Trzebiatowska P, Santamaria Echart A, Calvo Correas T, Eceiza A, Datta J. The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Prog Org Coat. 2018;115:41–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingjun Wang or Hongfeng Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Jing, F., Zhao, R. et al. Bio-based epoxy/polyurethane interpenetrating polymer networks (IPNs) derived from plant oils with tunable thermal and mechanical properties. J Therm Anal Calorim 148, 10093–10102 (2023). https://doi.org/10.1007/s10973-023-12368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12368-x

Keywords

Navigation