Skip to main content
Log in

Form-stable polyethylene glycol/activated carbon composite phase change materials for thermal energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of form-stable polyethylene glycol/activated carbon (AC) composites were prepared via a vacuum-assisted infiltration method, where polyethylene glycol (PEG) was used as an organic phase change material (PCM) and AC was used as an inorganic supporting matrix to prevent the leakage of the PCM during phase change period. The chemical structural, thermal properties, thermal stability, and reliability of PEG/AC composite PCMs (CPCMs) with various mass loadings of PEG2000 was investigated by N2 adsorption analyzer, Fourier transformation infrared (FT–IR) spectrometer, differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA), respectively. The form stability and thermal energy storage and release properties of PEG/AC CPCMs were also experimentally studied. The results showed that PEG/AC CPCM with 80 mass% PEG2000 loading displayed reasonable latent heat, suitable phase transition temperature, good thermal reliability, enhanced thermal conductivity, and thermal energy storage and release performances, as well as excellent form stability, which are suitable for the practical applications of PCMs for thermal energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

PEG:

Polyethylene glycol

PCM:

Phase change material

CPCMs:

Composite phase change materials

FS-CPCMs:

Form-stable composite phase change materials

FT-IR:

Fourier transformation infrared spectrometer

DSC:

Differential scanning calorimetry

TGA:

Thermogravimetric analyzer

BET:

Brunauer–Emmett–Teller

BJH:

Barrett–Joyner–Halenda

References

  1. Ghosh D, Ghose J, Datta P, Kumari P, Paul S. Strategies for phase change material application in latent heat thermal energy storage enhancement: status and prospect. J Energy Storage. 2022;53:105179.

    Google Scholar 

  2. Tofani K, Tiari S. Nano-enhanced phase change materials in latent heat thermal energy storage systems: a review. Energies. 2021;14:3821.

    CAS  Google Scholar 

  3. Tyagi VV, Chopra K, Kalidasan B, Chauhan A, Stritih U, Anand S, et al. Phase change material based advance solar thermal energy storage systems for building heating and cooling applications: a prospective research approach. Sustain Energy Techn. 2021;47:101318.

    Google Scholar 

  4. Abdelsalam MY, Teamah HM, Lightstone MF, Cotton JS. Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: Direct versus indirect heat exchange systems. Renew Energy. 2020;147:77–88.

    Google Scholar 

  5. Lin WY, Ma ZJ, Wang SG, Sohel MI, Lo Cascio E. Experimental investigation and two-level model-based optimisation of a solar photovoltaic thermal collector coupled with phase change material thermal energy storage. Appl Therm Eng. 2021;182:116098.

    Google Scholar 

  6. Li ZP, Ma T, Zhao JX, Song AT, Cheng YD. Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material. Energy. 2019;178:471–86.

    CAS  Google Scholar 

  7. Khanna S, Reddy KS, Mallick TK. Optimization of solar photovoltaic system integrated with phase change material. Sol Energy. 2018;163:591–9.

    Google Scholar 

  8. Zhao JQ, Sun JM, Li YC, Xia RQ, Zhang WY, Wang BB, et al. Wood-plastic materials with organic-inorganic hybrid phase change thermal storage as novel green energy storage composites for building energy conservation. J Mater Sci. 2022;57:3629–44.

    CAS  Google Scholar 

  9. Yang YY, Wu WD, Fu SY, Zhang H. Study of a novel ceramsite-based shape-stabilized composite phase change material (PCM) for energy conservation in buildings. Constr Build Mater. 2020;246:118479.

    CAS  Google Scholar 

  10. Sharifi NP, Shaikh AAN, Sakulich AR. Application of phase change materials in gypsum boards to meet building energy conservation goals. Energ Buildings. 2017;138:455–67.

    Google Scholar 

  11. Nishad S, Krupa I. Phase change materials for thermal energy storage applications in greenhouses: a review. Sustain Energy Techn. 2022;52:102241.

    Google Scholar 

  12. Chen SQ, Zhu YP, Chen Y, Liu W. Usage strategy of phase change materials in plastic greenhouses, in hot summer and cold winter climate. Appl Energ. 2020;277:115416.

    Google Scholar 

  13. Qin JW, Chen YK, Xu CL, Fang GY. Synthesis and thermal properties of 1-octadecanol/nano-TiO2/carbon nanofiber composite phase change materials for thermal energy storage. Mater Chem Phys. 2021;272:125041.

    CAS  Google Scholar 

  14. Liu X, Wang CM, Cai ZY, Hu ZJ, Zhu P. Fabrication and characterization of polyacrylonitrile and polyethylene glycol composite nanofibers by electrospinning. J Energy Storage. 2022;53:105171.

    Google Scholar 

  15. Zhang BN, Zhang Y, Li KY, Ma CY, Yuan BH. Novel segregated-structure phase change materials with binary fillers and the application effect in battery thermal management. J Energy Storage. 2022;54:105336.

    Google Scholar 

  16. Liu CC, Xu DJ, Weng JW, Zhou SJ, Li WJ, Wan YQ, et al. Phase change materials application in battery thermal management system: a review. Materials. 2020;13:4622.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang YH, Cheng WL, Zhao R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials. Energ Convers Manage. 2019;182:9–20.

    Google Scholar 

  18. Chaurasiya V, Rai KN, Singh J. A study of solidification on binary eutectic system with moving phase change material. Therm Sci Eng Prog. 2021;25:101002.

    CAS  Google Scholar 

  19. Shen JF, Hu ZJ, Wang CM, Chen K, Cai ZY, Wang TJ. Preparation and thermal properties of stearic acid/n-octadecane binary eutectic mixture as phase change materials for energy storage. ChemistrySelect. 2019;4:4125–30.

    CAS  Google Scholar 

  20. Cai YB, Song XF, Liu MM, Li F, Xie MS, Cai DL, et al. Flexible cellulose acetate nano-felts absorbed with capric-myristic-stearic acid ternary eutectic mixture as form-stable phase-change materials for thermal energy storage/retrieval. J Therm Anal Calorim. 2017;128:661–73.

    CAS  Google Scholar 

  21. Cai YB, Hou XB, Wang WW, Liu MM, Zhang JH, Qiao H, et al. Effects of SiO2 nanoparticles on structure and property of form-stable phase change materials made of cellulose acetate phase inversion membrane absorbed with capric-myristic-stearic acid ternary eutectic mixture. Thermochim Acta. 2017;653:49–58.

    CAS  Google Scholar 

  22. Zhao YH, Zhang H, Wang YZ, Duan YJ, Shi JF, Ye YM, et al. Cross-linked poly(N-hydroxymethyl acrylamide)/Polyethylene glycol eutectic microspheres with an interpenetrating polymer network as a composite phase change material. Energ Fuel. 2021;35:6240–9.

    CAS  Google Scholar 

  23. Sari A, Bicer A, Alkan C. Thermal energy storage properties of polyethylene glycol grafted styrenic copolymer as novel solid-solid phase change materials. Int J Energ Res. 2020;44:3976–89.

    CAS  Google Scholar 

  24. Shen J, Zhang P, Song LX, Li JP, Ji BQ, Li JJ, et al. Polyethylene glycol supported by phosphorylated polyvinyl alcohol/graphene aerogel as a high thermal stability phase change material. Compos Part B-Eng. 2019;179:107545.

    CAS  Google Scholar 

  25. Li X, Zhao YJ, Min X, Xiao J, Wu XW, Mi RY, et al. Carbon nanotubes modified graphene hybrid aerogel-based composite phase change materials for efficient thermal storage. Energ Buildings. 2022;273:112384.

    Google Scholar 

  26. Shen Z, Kwon S, Lee HL, Toivakka M, Oh K. Cellulose nanofibril/carbon nanotube composite foam-stabilized paraffin phase change material for thermal energy storage and conversion. Carbohyd Polym. 2021;273:118585.

    CAS  Google Scholar 

  27. Liu MY, Xu YF, Zhang XG, Qiao JX, Mi RY, Huang ZH, et al. Preparation and characterization of composite phase change materials based on lauric-myristic acid and expanded vermiculite with carbon layer. ChemistrySelect. 2021;6:3884–90.

    CAS  Google Scholar 

  28. Chen X, Gao HY, Hai GT, Jia DD, Xing LW, Chen SY, et al. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Mater. 2020;26:129–37.

    Google Scholar 

  29. Wei PR, Cipriani CE, Pentzer EB. Thermal energy regulation with 3D printed polymer-phase change material composites. Matter-Us. 2021;4:1975–89.

    CAS  Google Scholar 

  30. Yoo S, Kandare E, Shanks R, Al-Maadeed MA, Khatibi AA. Thermophysical properties of multifunctional glass fibre reinforced polymer composites incorporating phase change materials. Thermochim Acta. 2016;642:25–31.

    CAS  Google Scholar 

  31. Liu SX, Xin S, Jiang SB. Study of capric-palmitic acid/clay minerals as form-stable composite phase-change materials for thermal energy storage. ACS Omega. 2021;6:24650–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lv PZ, Liu CZ, Rao ZH. Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications. Renew Sust Energ Rev. 2017;68:707–26.

    CAS  Google Scholar 

  33. Zhou XM, Liu YF. Study on the preparation of high adsorption activated carbon material and its application as phase change energy storage carrier material. J Therm Anal Calorim. 2022;147:8169–76.

    CAS  Google Scholar 

  34. Nicholas AF, Hussein MZ, Zainal Z, Khadiran T. The effect of surface area on the properties of shape-stabilized phase change material prepared using palm kernel shell activated carbon. Sci Rep-Uk. 2020;10:15047.

    CAS  Google Scholar 

  35. Hu ZJ, Wang CM, Jia WB, Li X, Cai ZY. Preparation and thermal properties of 1-hexadecanol-palmitic acid eutectic mixture/activated carbon composite phase change material for thermal energy storage. ChemistrySelect. 2019;4:222–7.

    CAS  Google Scholar 

  36. Tang BT, Cui JS, Wang YM, Jia C, Zhang SF. Facile synthesis and performances of PEG/SiO2 composite form-stable phase change materials. Sol Energy. 2013;97:484–92.

    CAS  Google Scholar 

  37. Kou Y, Wang SY, Luo JP, Sun KY, Zhang J, Tan ZC, et al. Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications. J Chem Thermodyn. 2019;128:259–74.

    CAS  Google Scholar 

  38. Feng LL, Zhao W, Zheng J, Frisco S, Song P, Li XG. The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41). Sol Energ Mat Sol C. 2011;95:3550–6.

    CAS  Google Scholar 

  39. Qian Y, Wei P, Jiang P, Li Z, Yan Y, Liu J. Preparation of a novel PEG composite with halogen-free flame retardant supporting matrix for thermal energy storage application. Appl Energ. 2013;106:321–7.

    CAS  Google Scholar 

  40. Chen Z, Shan F, Cao L, Fang GY. Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage. Sol Energ Mat Sol C. 2012;102:131–6.

    CAS  Google Scholar 

  41. Yuan Y, Li T, Zhang N, Cao X, Yang X. Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application. J Therm Anal Calorim. 2016;124:881–8.

    CAS  Google Scholar 

  42. Yong J, Ding E, Li G. Study on transition characteristics of PEG/CDA solid–solid phase change materials. Polymer. 2002;43:117–22.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (Grant Nos: 2682021ZTPY022, 2682022KJ047, and 2682023GF026) and the Opening Project of Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province (Grant No: SZZZKT-202207).

Author information

Authors and Affiliations

Authors

Contributions

RZ and ZYC have equal contribution to this work. RZ Investigation, Data curation, Methodology, Validation, Writing-original draft preparation. ZC Investigation, Data curation, Software, Validation. CW Conceptualization, Supervision, Writing-Review & Editing, Funding acquisition. JS Investigation, Visualization. SX Software, Visualization. ZQ Methodology, Writing-Review & Editing.

Corresponding authors

Correspondence to Chaoming Wang or Zhiyong Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, R., Cai, Z., Wang, C. et al. Form-stable polyethylene glycol/activated carbon composite phase change materials for thermal energy storage. J Therm Anal Calorim 148, 9937–9946 (2023). https://doi.org/10.1007/s10973-023-12355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12355-2

Keywords

Navigation