Skip to main content
Log in

Synthesis, thermal and barrier properties of biodegradable aliphatic polycarbonates with different chain lengths

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Aliphatic polycarbonates (APCs) have become an essential packaging material because of their renewability, biodegradability, and biocompatibility. In this study, a series of high molecular weights APCs have been successfully synthesized using dimethyl carbonate (DMC) and different lengths of aliphatic diols with even carbon (n-CH2 = 4–12) via melt polymerization. Thermal properties, isothermal crystallization behavior, crystal structure, and scale of microstructure of APCs indicated that the flexibility and crystallization of molecular chains gradually increased with the increasing number of methylene groups of repeating units. However, due to the rigidity of ester group was higher than methylene group, and crystallization could increase the rigidity of chain segments, yielding strength and Young’s modulus of APCs decreased first and then gradually increased with the increasing number of methylene groups in the repeating units. Furthermore, the scale of microstructure indicated that Brill transition increased the distance between intermolecular chains. Therefore, although the trans-gauche coexistence chain conformation simultaneously decreased the rigidity and crystallization of chain segments, barrier property of poly(octamethylene carbonate) with Brill transition was similar to long-chain APCs because of the lengthened diffusion path. The analytical mechanism of structure-performance relationship from the viewpoint of molecular interactions and chain structure will provide an entirely new thought for developing new barrier materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davis SJ, Caldeira K, Matthews HD. Future CO2 emissions and climate change from existing energy infrastructure. Science. 2010;329(5997):1330–3. https://doi.org/10.1126/science.1194210.

    Article  CAS  PubMed  Google Scholar 

  2. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. The velocity of climate change. Nature. 2009;462(7276):1052–5. https://doi.org/10.1038/nature08649.

    Article  CAS  PubMed  Google Scholar 

  3. Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev. 2018;118(2):434–504. https://doi.org/10.1021/acs.chemrev.7b00435.

    Article  CAS  PubMed  Google Scholar 

  4. Honda M, Tamura M, Nakagawa Y, Sonehara S, Suzuki K, Ki F, et al. Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine. Chemsuschem. 2013;6(8):1341–4. https://doi.org/10.1002/cssc.201300229.

    Article  CAS  PubMed  Google Scholar 

  5. Honda M, Kuno S, Sonehara S, Ki F, Suzuki K, Nakagawa Y, et al. Tandem carboxylation-hydration reaction system from methanol, CO2 and benzonitrile to dimethyl carbonate and benzamide catalyzed by CeO2. ChemCatChem. 2011;3(2):365–70. https://doi.org/10.1002/cctc.201000339.

    Article  CAS  Google Scholar 

  6. Zhou L, Qin P, Wu L, Li BG, Dubois P. Potentially biodegradable “short-long” type diol-diacid polyesters with superior Crystallizability, tensile modulus, and water Vapor barrier. ACS Sustain Chem Eng. 2021;9(51):17362–70. https://doi.org/10.1021/acssuschemeng.1c06752.

    Article  CAS  Google Scholar 

  7. Stempfle F, Ortmann P, Mecking S. Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem Rev. 2016;116(7):4597–641. https://doi.org/10.1021/acs.chemrev.5b00705.

    Article  CAS  PubMed  Google Scholar 

  8. Yan D, Li Y, Zhu X. Brill transition in nylon 10 12 investigated by variable temperature XRD and real time FT-IR. Macromol Rapid Comm. 2000;21(15):1040.

    Article  CAS  Google Scholar 

  9. Lotz B. A fresh look at the structures of nylons and the Brill transition. Adv Fiber Mater. 2021;3(4):203–9. https://doi.org/10.1007/s42765-021-00085-9.

    Article  CAS  Google Scholar 

  10. Zhao TP, Ren XK, Zhu WX, Liang YR, Li CC, Men YF, et al. “Brill transition” shown by green material poly (octamethylene carbonate). ACS Macro Lett. 2015;4(3):317–21. https://doi.org/10.1021/acsmacrolett.5b00045.

    Article  CAS  PubMed  Google Scholar 

  11. Pérez-Camargo RA, Meabe L, Liu G, Sardon H, Zhao Y, Wang D, et al. Even–odd effect in aliphatic polycarbonates with different chain lengths: From poly (hexamethylene carbonate) to poly (dodecamethylene carbonate). Macromolecules. 2020;54(1):259–71. https://doi.org/10.1021/acs.macromol.0c02374.

    Article  CAS  Google Scholar 

  12. Perez-Camargo RA, Liu G, Meabe L, Zhao Y, Sardon H, Wang D, et al. Solid-solid crystal transitions (δ to α) in poly (hexamethylene carbonate) and poly (octamethylene carbonate). Macromolecules. 2021;54(15):7258–68. https://doi.org/10.1021/acs.macromol.1c01188.

    Article  CAS  Google Scholar 

  13. Zhao TP, Celli A, Ren XK, Xu JR, Yang S, Liu CY, et al. Sharp and strong “Brill transition” of poly (hexamethylene dithiocarbonate). Polymer. 2017;113:267–73. https://doi.org/10.1016/j.polymer.2017.02.045.

    Article  CAS  Google Scholar 

  14. Sokolsky-Papkov M, Langer R, Domb AJ. Synthesis of aliphatic polyesters by polycondensation using inorganic acid as catalyst. Polym Adv Technol. 2011;22(5):502–11. https://doi.org/10.1002/pat.1541.

    Article  CAS  PubMed  Google Scholar 

  15. Lu Y, Tu Z, Cheng Y, Liu L, Leng X, Wei Z, et al. Kilogram-scale production of biodegradable poly (butylene carbonate): molecular weight dependence of physical properties and enhanced crystallization by nucleating agent. J Polym Environ. 2023;31(4):1510–24. https://doi.org/10.1007/s10924-022-02689-7.

    Article  CAS  Google Scholar 

  16. Zhang J, Zhu W, Li C, Zhang D, Xiao Y, Guan G, et al. Effect of the biobased linear long-chain monomer on crystallization and biodegradation behaviors of poly (butylene carbonate)-based copolycarbonates. RSC Adv. 2015;5(3):2213–22. https://doi.org/10.1039/c4ra10466h.

    Article  CAS  Google Scholar 

  17. Zhu W, Huang X, Li C, Xiao Y, Zhang D, Guan G. High-molecular-weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: synthesis and characterization. Polym Int. 2011;60(7):1060–7. https://doi.org/10.1002/pi.3043.

    Article  CAS  Google Scholar 

  18. Mizuno A, Mitsuiki M, Motoki M. Effect of crystallinity on the glass transition temperature of starch. J Agric Food Chem. 1998;46(1):98–103. https://doi.org/10.1021/jf970612b.

    Article  CAS  PubMed  Google Scholar 

  19. Park J, Han S, Park H, Lee J, Cho S, Seo M, et al. Simultaneous measurement of glass-transition temperature and crystallinity of as-prepared polymeric films from restitution. Macromolecules. 2021;54(20):9532–41. https://doi.org/10.1021/acs.macromol.1c01477.

    Article  CAS  Google Scholar 

  20. Lauritzen JI Jr, Hoffman JD. Theory of formation of polymer crystals with folded chains in dilute solution. J Res Natl Bur Stand Sect A. 1960;64A:73–102. https://doi.org/10.1002/pen.11689.

    Article  CAS  Google Scholar 

  21. Hoffman JD, Lauritzen JI Jr. Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Natl Bur Stand Sect A. 1961;65A:297–336. https://doi.org/10.6028/jres.065A.035.

    Article  CAS  Google Scholar 

  22. Lambrigger M. Evaluation of data on the kinetics of isothermal polymer crystallization. Polym Eng Sci. 1996;36(1):98–9. https://doi.org/10.1002/pen.11689.

    Article  CAS  Google Scholar 

  23. Raghunanan L, Narine SS. Influence of structure on chemical and thermal stability of aliphatic diesters. J Phys Chem B. 2013;117(47):14754–62. https://doi.org/10.1021/jp409062k.

    Article  CAS  PubMed  Google Scholar 

  24. Persenaire O, Alexandre M, Degée P, Dubois P. Mechanisms and kinetics of thermal degradation of poly (ε-caprolactone). Biomacromol. 2001;2(1):288–94. https://doi.org/10.1021/bm0056310.

    Article  CAS  Google Scholar 

  25. Shigemoto I, Kawakami T, Taiko H, Okumura M. A quantum chemical study on the thermal degradation reaction of polyesters. Polym Degrad Stabil. 2012;97(6):941–7. https://doi.org/10.1016/j.polymdegradstab.2012.03.020.

    Article  CAS  Google Scholar 

  26. Xu J, Zhang S, Guo B. Insights from polymer crystallization: Chirality, recognition and competition. Chinese Chem Lett. 2017;28(11):2092–8. https://doi.org/10.1016/j.cclet.2017.10.012.

    Article  CAS  Google Scholar 

  27. Zeng JB, Zhu QY, Lu X, He YS, Wang YZ. From miscible to partially miscible biodegradable double crystalline poly (ethylene succinate)-b-poly (butylene succinate) multiblock copolymers. Polym Chem. 2012;3(2):399–408. https://doi.org/10.1039/c1py00456e.

    Article  CAS  Google Scholar 

  28. Morales-Huerta JC, Martinez de Ilarduya A, Muñoz-GuerraSn. Sustainable aromatic copolyesters via ring opening polymerization: poly (butylene 2, 5-furandicarboxylate-co-terephthalate)s. ACS Sustain Chem Eng. 2016;4(9):4965–73. https://doi.org/10.1021/acssuschemeng.6b01302.

    Article  CAS  Google Scholar 

  29. Yu Y, Xiong H, Xiao J, Qian X, Leng X, Wei Z, et al. High molecular weight unsaturated copolyesters derived from fully biobased trans-β-hydromuconic acid and fumaric acid with 1, 4-butanediol: synthesis and thermomechanical properties. ACS Sustain Chem Eng. 2019;7(7):6859–69. https://doi.org/10.1021/acssuschemeng.8b06334.

    Article  CAS  Google Scholar 

  30. Fischer S, Jiang Z, Men Y. Analysis of the lamellar structure of semicrystalline polymers by direct model fitting of SAXS patterns. J Phys Chem B. 2011;115(47):13803–8. https://doi.org/10.1021/jp204998p.

    Article  CAS  PubMed  Google Scholar 

  31. Heeley E, Gough T, Hughes D, Bras W, Rieger J, Ryan A. Effect of processing parameters on the morphology development during extrusion of polyethylene tape: An in-line small-angle X-ray scattering (SAXS) study. Polymer. 2013;54(24):6580–8. https://doi.org/10.1016/j.polymer.2013.10.004.

    Article  CAS  Google Scholar 

  32. Gelamo EL, Itri R, Alonso A, da Silva JV, Tabak M. Small-angle X-ray scattering and electron paramagnetic resonance study of the interaction of bovine serum albumin with ionic surfactants. J Colloid Interf Sci. 2004;277(2):471–82. https://doi.org/10.1016/j.jcis.2004.04.065.

    Article  CAS  Google Scholar 

  33. Yang S. Methods for SAXS-based structure determination of biomolecular complexes. Adv Mater. 2014;26(46):7902–10. https://doi.org/10.1002/adma.201304475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hura GL, Menon AL, Hammel M, Rambo RP, Poole Ii FL, Tsutakawa SE, et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods. 2009;6(8):606–12. https://doi.org/10.1038/nmeth.1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Xia Q, Shi K, Huang Q. Scaling behaviors of α-zein in acetic acid solutions. J Phys Chem B. 2011;115(32):9695–702. https://doi.org/10.1021/jp203476m.

    Article  CAS  PubMed  Google Scholar 

  36. Liu L, Yang M, Xu J, Fan X, Gao W, Wang Q, et al. Exploring the role of pullulan in the process of potato starch film formation. Carbohyd Polym. 2020;234:115910. https://doi.org/10.1016/j.carbpol.2020.115910.

    Article  CAS  Google Scholar 

  37. Tian Y, Hu H, Chen C, Li F, Ying WB, Zheng L, et al. Enhanced seawater degradation through copolymerization with diglycolic acid: Synthesis, microstructure, degradation mechanism and modification for antibacterial packaging. Chem Eng J. 2022;447:137535. https://doi.org/10.1016/j.cej.2022.137535.

    Article  CAS  Google Scholar 

  38. Tuan Ismail TN, Ibrahim NA, Palam KD, Sendijarevic A, Sendijarevic IM, Schiffman C, et al. Effect of chain length for dicarboxylic monomeric units of polyester polyols on the morphology, thermal and mechanical properties of thermoplastic urethanes. J Am Chem Soc. 2020;97(7):737–49. https://doi.org/10.1002/aocs.12359.

    Article  CAS  Google Scholar 

  39. Brennan DJ, Haag AP, White JE, Brown CN. High-barrier poly (hydroxy amide ethers): effect of polymer structure on oxygen transmission rates. 2. Macromolecules. 1998;31(8):2622–30. https://doi.org/10.1021/ma971371b.

    Article  CAS  Google Scholar 

  40. Marano S, Laudadio E, Minnelli C, Stipa P. Tailoring the barrier properties of PLA: a state-of-the-art review for food packaging applications. Polymers. 2022;14(8):1626. https://doi.org/10.3390/polym14081626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks for the SSRF Small-Angle Scattering group at BL16B1 for the SAXS support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wei.

Ethics declarations

Conflict of interest

The authors declare that there have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Lu, Y., Xia, M. et al. Synthesis, thermal and barrier properties of biodegradable aliphatic polycarbonates with different chain lengths. J Therm Anal Calorim 148, 10163–10174 (2023). https://doi.org/10.1007/s10973-023-12352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12352-5

Keywords

Navigation