Skip to main content
Log in

Three-dimensional numerical analysis of performance of PV module integrated with PCM and internal pin fins of different shapes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Techniques must be used to improve the thermal conductivity of paraffin phase change materials (PCM) for augmenting the passive thermal management of PV. In this paper, transient three-dimensional numerical simulations of PV-PCM systems with square and circular cross-sectional fins have been carried out to analyse the effect of fins and inclination \(\left(\theta \right)\) on the performance. Finned PV-PCM systems with multiple fin numbers are considered. The parameters, such as the average temperature and efficiency of the module, are simulated and compared. Results show that the system with square fins gives better thermal regulation over cylindrical ones for all inclinations and fin numbers. The system with 16 square fins at \(\theta =45^\circ\) is found with minimum PV temperature and maximum efficiency. Maximum temperature reductions of 57.56 °C and 56.8 °C and efficiency enhancements of 43.47% and 42.89% are achieved for horizontal systems with 16 square and cylindrical fins, respectively, over PV alone system. The effect of fin length is also simulated, and the maximum PV temperature reductions of 56.8 °C and 45.96 °C are obtained for full-length configurations with inclinations of \(0^\circ\) and \(45^\circ ,\) respectively. The peak velocity of melted PCM is simulated, and a maximum peak velocity of 4.88 mm s−1 is obtained for the unfinned PV-PCM system with \(\theta =45^\circ .\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

EVA:

Ethylene-vinyl acetate

PV:

Photovoltaic

PV-PCM:

Photovoltaic-phase change material

A :

Upper surface of the PV panel (m2)

B :

Liquid fraction

\({c}_{\mathrm{p}}\) :

Heat capacity (J kg1 K1)

G :

Solar irradiation (W m2)

g :

Acceleration due to gravity (m s2)

h :

Convective heat transfer coefficient (W m2 K1)

k :

Thermal conductivity (W m1 K1)

\({L}_{\mathrm{c}}\) :

Characteristic length (m)

\({L}_{\mathrm{h}}\) :

Latent heat (J kg1)

P :

Pressure (Pa)

\({Q}_{\mathrm{g}}\) :

Heat generation per unit volume (W m3)

Ra:

Rayleigh number

Re:

Reynolds number

T :

Temperature (\(^\circ{\rm C}\))

\({T}_{\mathrm{m}}\) :

Melting temperature (\(^\circ{\rm C}\))

\({t}_{\mathrm{si}}\) :

Silicon thickness (m)

t :

Time (s)

u :

x-component velocity (m s1)

v :

y-component velocity (m s1)

v w :

Wind velocity (m s1)

w :

z-component velocity (m s1)

\(\beta\) :

Volume expansion coefficient (K1)

\(\Delta T\) :

Phase change zone (\(^\circ{\rm C}\))

\(\eta\) :

Efficiency (%)

\(\mu\) :

Dynamic viscosity (Pa s)

\(\nu\) :

Kinematic viscosity (m2 s1)

\(\rho\) :

Density (kg m3)

\(\theta\) :

Inclination angle (degree)

\({(\tau \alpha )}_{\mathrm{e}}\) :

Absorptivity–transmissivity product for glass cover of the PV

a :

Ambient

g :

Glass

l :

Liquid

pcm:

PCM

s :

Solid

si :

Silicon

x :

Along x

y :

Along y

z :

Along z

References

  1. Kurkute N, Priyam A. A thorough review of the existing concentrated solar power technologies and various performance enhancing techniques. J Therm Anal Calorim. 2022;147:14713–37. https://doi.org/10.1007/s10973-022-11634-8.

    Article  CAS  Google Scholar 

  2. Dubey S, Sarvaiya JN, Seshadri B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—a review. Energy Procedia. 2013;33:311–21. https://doi.org/10.1016/j.egypro.2013.05.072.

    Article  Google Scholar 

  3. Wysocki JJ, Rappaport P. Effect of temperature on photovoltaic solar energy conversion. J Appl Phys. 2004;31:571–8. https://doi.org/10.1063/1.1735630.

    Article  Google Scholar 

  4. Al Tarabsheh A, Voutetakis S, Papadopoulos AI, Seferlis P, Etier I, Saraereh O. Investigation of temperature effects in efficiency improvement of non-uniformly cooled photovoltaic cells. Chem Eng Trans. 2013;35:1387–92. https://doi.org/10.3303/CET1335231.

    Article  Google Scholar 

  5. Hossain MI, Bousselham A, Alharbi FH, Tabet N. Computational analysis of temperature effects on solar cell efficiency. J Comput Electron. 2017;16:776–86. https://doi.org/10.1007/s10825-017-1016-5.

    Article  CAS  Google Scholar 

  6. Senthil Kumar M, Balasubramanian KR, Maheswari L. Effect of temperature on solar photovoltaic panel efficiency. Int J Eng Adv Technol. 2019;8:2593–5. https://doi.org/10.35940/ijeat.F8745.088619.

    Article  Google Scholar 

  7. Wu S, Xiong C. Passive cooling technology for photovoltaic panels for domestic houses. Int J Low-Carbon Technol. 2014;9:118–26. https://doi.org/10.1093/ijlct/ctu013.

    Article  Google Scholar 

  8. Chen H, Chen X, Li S, Ding H. Comparative study on the performance improvement of photovoltaic panel with passive cooling under natural ventilation. Int J Smart Grid Clean Energy. 2014;34:374–9. https://doi.org/10.12720/sgce.3.4.374-379.

    Article  Google Scholar 

  9. Kalaiselvan S, Karthikeyan V, Rajesh G, Sethu Kumaran A, Ramkiran B, Neelamegam P. Solar PV active and passive cooling technologies-a review. In: 7th IEEE International conference on computation of power, energy, information and communication ICCPEIC 2018. IEEE; 2018;166–9. https://doi.org/10.1109/ICCPEIC.2018.8525185.

  10. Arifin Z, Tjahjana DDDP, Hadi S, Rachmanto RA, Setyohandoko G, Sutanto B. Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks. Int J Photoenergy. 2020. https://doi.org/10.1155/2020/1574274.

    Article  Google Scholar 

  11. AlAmri F, AlZohbi G, AlZahrani M, Aboulebdah M. Analytical modeling and optimization of a heat sink design for passive cooling of solar PV panel. Sustainability. 2021;13:3490. https://doi.org/10.3390/su13063490.

    Article  Google Scholar 

  12. Souayfane F, Fardoun F, Biwole PH. Phase change materials (PCM) for cooling applications in buildings: a review. Energy Build. 2016;129:396–431. https://doi.org/10.1016/j.enbuild.2016.04.006.

    Article  Google Scholar 

  13. Chandel SS, Agarwal T. Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems. Renew Sustain Energy Rev. 2017;73:1342–51. https://doi.org/10.1016/j.rser.2017.02.001.

    Article  Google Scholar 

  14. Teggar M, Arıcı M, Mert MS, Mousavi Ajarostaghi SS, Niyas H, Tunçbilek E, et al. A comprehensive review of micro/nano enhanced phase change materials. J Therm Anal Calorim. 2022;147:3989–4016. https://doi.org/10.1007/s10973-021-10808-0.

    Article  CAS  Google Scholar 

  15. Zalba B, Marin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83. https://doi.org/10.1016/S1359-4311(02)00192-8.

    Article  CAS  Google Scholar 

  16. Shukla A, Kant K, Sharma A, Biwole PH. Cooling methodologies of photovoltaic module for enhancing electrical efficiency: a review. Sol Energy Mater Sol Cells. 2017;160:275–86. https://doi.org/10.1016/j.solmat.2016.10.047.

    Article  CAS  Google Scholar 

  17. Biwole PH, Eclache P, Kuznik F. Phase-change materials to improve solar panel’s performance. Energy Build. 2013;62:59–67. https://doi.org/10.1016/j.enbuild.2013.02.059.

    Article  Google Scholar 

  18. Smith CJ, Forster PM, Crook R. Global analysis of photovoltaic energy output enhanced by phase change material cooling. Appl Energy. 2014;126:21–8. https://doi.org/10.1016/j.apenergy.2014.03.083.

    Article  Google Scholar 

  19. Park J, Kim T, Leigh SB. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Sol Energy. 2014;105:561–74. https://doi.org/10.1016/j.solener.2014.04.020.

    Article  Google Scholar 

  20. Ma T, Yang H, Zhang Y, Lu L, Wang X. Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: a review and outlook. Renew Sustain Energy Rev. 2015;43:1273–84. https://doi.org/10.1016/j.rser.2014.12.003.

    Article  Google Scholar 

  21. Browne MC, Quigley D, Hard HR, Gilligan S, Ribeiro NCC, Almeida N, et al. Assessing the thermal performance of phase change material in a photovoltaic/thermal system. Energy Procedia. 2016;91:113–21. https://doi.org/10.1016/j.egypro.2016.06.184.

    Article  Google Scholar 

  22. Stropnik R, Stritih U. Increasing the efficiency of PV panel with the use of PCM. Renew Energy. 2016;97:671–9. https://doi.org/10.1016/j.renene.2016.06.011.

    Article  Google Scholar 

  23. Kant K, Shukla A, Sharma A, Biwole PH. Heat transfer studies of photovoltaic panel coupled with phase change material. Sol Energy. 2016;140:151–61. https://doi.org/10.1016/j.solener.2016.11.006.

    Article  CAS  Google Scholar 

  24. Khanna S, Reddy KS, Mallick TK. Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions. Energy. 2017;133:887–99. https://doi.org/10.1016/j.energy.2017.05.150.

    Article  Google Scholar 

  25. Hachem F, Abdulhay B, Ramadan M, El Hage H, El Rab MG, Khaled M. Improving the performance of photovoltaic cells using pure and combined phase change materials—experiments and transient energy balance. Renew Energy. 2017;107:567–75. https://doi.org/10.1016/j.renene.2017.02.032.

    Article  CAS  Google Scholar 

  26. Nouira M, Sammouda H. Numerical study of an inclined photovoltaic system coupled with phase change material under various operating conditions. Appl Therm Eng. 2018;141:958–75. https://doi.org/10.1016/j.applthermaleng.2018.06.039.

    Article  Google Scholar 

  27. Maghrabie H, Mohamed A, Fahmy A, Abdelsamee A. Performance augmentation of PV panels using phase change material cooling technique: a review. SVU-Int J Eng Sci Appl. 2021;2:1–13. https://doi.org/10.21608/svusrc.2021.87202.1013.

    Article  Google Scholar 

  28. Huang MJ, Eames PC, Norton B, Hewitt NJ. Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Sol Energy Mater Sol Cells. 2011;95:1598–603. https://doi.org/10.1016/j.solmat.2011.01.008.

    Article  CAS  Google Scholar 

  29. Atkin P, Farid MM. Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins. Sol Energy. 2015;114:217–28. https://doi.org/10.1016/j.solener.2015.01.037.

    Article  CAS  Google Scholar 

  30. Biwole PH, Groulx D, Souayfane F, Chiu T. Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure. Int J Therm Sci. 2018;124:433–46. https://doi.org/10.1016/j.ijthermalsci.2017.10.038.

    Article  Google Scholar 

  31. Khan S, Waqas A, Ahmad N, Mahmood M, Shahzad N, Sajid MB. Thermal management of solar PV module by using hollow rectangular aluminum fins. J Renew Sustain Energy. 2020;12:063501. https://doi.org/10.1063/5.0020129.

    Article  Google Scholar 

  32. Yıldız Ç, Arıcı M, Nižetić S, Shahsavar A. Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins. Energy. 2020;207:118223. https://doi.org/10.1016/j.energy.2020.118223.

    Article  CAS  Google Scholar 

  33. Singh P, Khanna S, Newar S, Sharma V, Reddy KS, Mallick TK, et al. Solar photovoltaic panels with finned phase change material heat sinks. Energies. 2020;13:1–16. https://doi.org/10.3390/en13102558.

    Article  CAS  Google Scholar 

  34. Voller VR, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transf. 1987;30:1709–19. https://doi.org/10.1016/0017-9310(87)90317-6.

    Article  CAS  Google Scholar 

  35. Brent AD, Voller VR, Reid KJ. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf. 1988;13:297–318. https://doi.org/10.1080/10407788808913615.

    Article  Google Scholar 

  36. Poirier DR. Permeability for flow of interdendritic liquid in columnar-dendritic alloys. Metall Trans B. 1987;18:245–55. https://doi.org/10.1007/BF02658450.

    Article  Google Scholar 

  37. Groulx D, Biwole PH, Bhouri M. Phase change heat transfer in a rectangular enclosure as a function of inclination and fin placement. Int J Therm Sci. 2020;151:106260. https://doi.org/10.1016/j.ijthermalsci.2020.106260.

    Article  Google Scholar 

  38. Sasidharan UK, Bandaru R. Thermal management of photovoltaic panel with nano-enhanced phase change material at different inclinations. Environ Sci Pollut Res. 2022;29:34759–75. https://doi.org/10.1007/s11356-021-18075-0.

    Article  Google Scholar 

  39. Kaplani E, Kaplanis S. Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination. Sol Energy. 2014;107:443–60. https://doi.org/10.1016/j.solener.2014.05.037.

    Article  Google Scholar 

  40. Incropera FP, Bergman TL, DeWitt DP, Lavine AS. Fundamentals of heat and mass transfer. Wiley; 2013.

  41. Fujii T, Imura H. Natural-convection heat transfer from a plate with arbitrary inclination. Int J Heat Mass Transf. 1972;15:755–67. https://doi.org/10.1016/0017-9310(72)90118-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

UKS has contributed to the main conceptual idea, study design and full article writing. MJ helped in conducting simulations and article writing. RB has been involved in the technical discussions, supervising the whole work, checking the review connectivity and improving the write-up. All authors read and approved the final manuscript.

Corresponding author

Correspondence to B. Rohinikumar.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unnikrishnan, K.S., Jayatej, M. & Rohinikumar, B. Three-dimensional numerical analysis of performance of PV module integrated with PCM and internal pin fins of different shapes. J Therm Anal Calorim 148, 9739–9760 (2023). https://doi.org/10.1007/s10973-023-12345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12345-4

Keywords

Navigation