Skip to main content
Log in

A comparative analysis of parabolic trough collector (PTC) using a hybrid nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solar energy can be converted into thermal energy that can be utilized in both residential and industrial applications by using a parabolic through collector (PTC). Hybrid nanofluids are innovative heat transfer fluids made up of a base fluid and solid nanometer-sized particles (nanoparticles) that significantly boost the thermal properties of the fluid and, in turn, the system’s thermal performance. The working fluid for considered PTC used in this paper is a hybrid nanofluid. This study gives a comprehensive, thorough thermo-mathematical numerical analysis of PTC collectors employing multiwall carbon nanotube- aluminium oxide (MWCNT/Al2O3) hybrid nanofluids in a subtropical desert with moderate winters and very hot, sunny summers. A temperature variation in the components of the PTC, thermodynamic (energy, the exergy of the solar collector under hot desert conditions is carried out using an Engineering Equation Solver (EES). The numerical model was initially checked against published experimental data, and a reasonable agreement was achieved. Results reveal that an increase in nanoparticle concentration could positively influence the performance of the PTC collector. When the 1.5% MWCNT/1.5% Al2O3-water hybrid nanofluid is regarded as a cooling fluid, the maximum outlet fluid temperature, energy, the exergy of the PTC collector are achieved. The PTC operates effectively on a summer day under hot climatic circumstances while limiting performance on winter days. For the summer day, the maximum energy, the exergy generated by the PTC using a 1.5% MWCNT/1.5% Al2O3-water hybrid nanofluid, is 5066 W, and 876 W, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Rejeb O, Radwan A, Abo-Zahhad EM, Ghenai C, Serageldin AA, Ahmed M, et al. Numerical analysis of passive cooled ultra-high concentrator photovoltaic cell using optimal heat spreader design. Case Stud Therm Eng. 2020. https://doi.org/10.1016/j.csite.2020.100757.

    Article  Google Scholar 

  2. Ghenai C, Ahmad FF, Rejeb O, Hamid AK. Sensitivity analysis of design parameters and power gain correlations of bi-facial solar PV system using response surface methodology. Sol Energy. 2021;223:44–53. https://doi.org/10.1016/j.solener.2021.05.024.

    Article  Google Scholar 

  3. Rejeb O, Alirahmi SM, Assareh E, El Haj AM, Jemni A, Bettayeb M, et al. Innovative integrated solar powered polygeneration system for green Hydrogen, Oxygen, electricity and heat production. Energy Convers Manag. 2022;269:116073. https://doi.org/10.1016/j.enconman.2022.116073.

    Article  Google Scholar 

  4. Ghenai C, Ahmad FF, Rejeb O, Bettayeb M. Artificial neural networks for power output forecasting from bifacial solar PV system with enhanced building roof surface Albedo. J Build Eng. 2022;56:104799. https://doi.org/10.1016/j.jobe.2022.104799.

    Article  Google Scholar 

  5. Parker W, Odukomaiya A, Thornton J, Woods J. The cost savings potential of controlling solar thermal collectors with storage for time-of-use electricity rates. Sol Energy. 2023;249:684–93. https://doi.org/10.1016/j.solener.2022.12.004.

    Article  Google Scholar 

  6. Chai S, Yao J, Liang J-D, Chiang Y-C, Zhao Y, Chen S-L, et al. Heat transfer analysis and thermal performance investigation on an evacuated tube solar collector with inner concentrating by reflective coating. Sol Energy. 2021;220:175–86. https://doi.org/10.1016/j.solener.2021.03.048.

    Article  Google Scholar 

  7. Rodríguez-Muñoz JM, Bove I, Alonso-Suárez R. Novel incident angle modifier model for quasi-dynamic testing of flat plate solar thermal collectors. Sol Energy. 2021;224:112–24. https://doi.org/10.1016/j.solener.2021.05.026.

    Article  Google Scholar 

  8. Jiang Y, Zhang H, Zhao R, Liu Z, Wang Y, You S, et al. Thermal and optical performance analysis of triangular solar air collectors and regional applicability in China. Sol Energy. 2023;249:288–300. https://doi.org/10.1016/j.solener.2022.11.010.

    Article  CAS  Google Scholar 

  9. Sivakumar M, Mahalingam S, Mohanraj M. Energy, financial and environmental impact analysis of solar thermal heat pump systems using a direct expansion packed bed evaporator-collector. Sol Energy. 2022;232:154–68. https://doi.org/10.1016/j.solener.2021.12.059.

    Article  Google Scholar 

  10. Chand S, Chand P, Kumar GH. Thermal performance enhancement of solar air heater using louvered fins collector. Sol Energy. 2022;239:10–24. https://doi.org/10.1016/j.solener.2022.04.046.

    Article  Google Scholar 

  11. Perini S, Tonnellier X, King P, Sansom C. Theoretical and experimental analysis of an innovative dual-axis tracking linear Fresnel lenses concentrated solar thermal collector. Sol Energy. 2017;153:679–90. https://doi.org/10.1016/j.solener.2017.06.010.

    Article  Google Scholar 

  12. Abbas R, Montes MJ, Rovira A, Martínez-Val JM. Parabolic trough collector or linear Fresnel collector? A comparison of optical features including thermal quality based on commercial solutions. Sol Energy. 2016;124:198–215. https://doi.org/10.1016/j.solener.2015.11.039.

    Article  Google Scholar 

  13. Zhou L, Li X, Zhao Y, Dai Y. Performance assessment of a single/double hybrid effect absorption cooling system driven by linear Fresnel solar collectors with latent thermal storage. Sol Energy. 2017;151:82–94. https://doi.org/10.1016/j.solener.2017.05.031.

    Article  Google Scholar 

  14. Moghimi MA, Craig KJ, Meyer JP. Simulation-based optimisation of a linear Fresnel collector mirror field and receiver for optical, thermal and economic performance. Sol Energy. 2017;153:655–78. https://doi.org/10.1016/j.solener.2017.06.001.

    Article  Google Scholar 

  15. Dhaked DK, Birla D. Modeling and control of a solar-thermal dish-stirling coupled PMDC generator and battery based DC microgrid in the framework of the ENERGY NEXUS. Energy Nexus. 2022;5:100048. https://doi.org/10.1016/j.nexus.2022.100048.

    Article  Google Scholar 

  16. Li X, Li R, Hu L, Zhu S, Zhang Y, Cui X, et al. Performance analysis of a dish solar thermal power system with lunar regolith heat storage for continuous energy supply of lunar base. Energy. 2023;263:126139. https://doi.org/10.1016/j.energy.2022.126139.

    Article  Google Scholar 

  17. Bitam EW, Demagh Y, Hachicha AA, Benmoussa H, Kabar Y. Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology. Appl Energy. 2018;218:494–510. https://doi.org/10.1016/j.apenergy.2018.02.177.

    Article  Google Scholar 

  18. Hachicha AA, Yousef BAA, Said Z, Rodríguez I. A review study on the modeling of high-temperature solar thermal collector systems. Renew Sustain Energy Rev. 2019;112:280–98. https://doi.org/10.1016/j.rser.2019.05.056.

    Article  Google Scholar 

  19. Hachicha AA, Rodríguez I, Ghenai C. Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation. Appl Energy. 2018;214:152–65. https://doi.org/10.1016/j.apenergy.2018.01.054.

    Article  Google Scholar 

  20. Hachicha AA, Rodríguez I, Capdevila R, Oliva A. Heat transfer analysis and numerical simulation of a parabolic trough solar collector. Appl Energy. 2013;111:581–92. https://doi.org/10.1016/j.apenergy.2013.04.067.

    Article  Google Scholar 

  21. Hachicha AA, Rodríguez I, Castro J, Oliva A. Numerical simulation of wind flow around a parabolic trough solar collector. Appl Energy. 2013;107:426–37. https://doi.org/10.1016/j.apenergy.2013.02.014.

    Article  Google Scholar 

  22. Immonen J, Mohammadi K, Powell KM. Simulating a solar parabolic trough collector plant used for industrial process heat using an optimized operating scheme that utilizes flexible heat integration. Sol Energy. 2022;236:756–71. https://doi.org/10.1016/j.solener.2022.03.044.

    Article  Google Scholar 

  23. Ben Othman F, Eddhibi F, Bel Hadj Ali A, Fadhel A, Bayer Ö, Tarı İ, et al. Investigation of olive mill sludge treatment using a parabolic trough solar collector. Sol Energy. 2022;232:344–61. https://doi.org/10.1016/j.solener.2022.01.008.

    Article  Google Scholar 

  24. Pandey M, Padhi BN, Mishra I. Numerical simulation of solar parabolic trough collector with viscous dissipation in slits of arc-plug insertion. Sol Energy. 2021;230:810–24. https://doi.org/10.1016/j.solener.2021.11.008.

    Article  Google Scholar 

  25. Jinshah BS, Balasubramanian KR. Thermo-mathematical model for parabolic trough collector using a complete radiation heat transfer model – A new approach. Sol Energy. 2020;197:58–72. https://doi.org/10.1016/j.solener.2019.12.068.

    Article  Google Scholar 

  26. Madiouli J, Lashin A, Shigidi I, Badruddin IA, Kessentini A. Experimental study and evaluation of single slope solar still combined with flat plate collector, parabolic trough and packed bed. Sol Energy. 2020;196:358–66. https://doi.org/10.1016/j.solener.2019.12.027.

    Article  Google Scholar 

  27. Yahi F, Belhamel M, Bouzeffour F, Sari O. Structured dynamic modeling and simulation of parabolic trough solar collector using bond graph approach. Sol Energy. 2020;196:27–38. https://doi.org/10.1016/j.solener.2019.11.065.

    Article  Google Scholar 

  28. Okonkwo EC, Essien EA, Akhayere E, Abid M, Kavaz D, Ratlamwala TAH. Thermal performance analysis of a parabolic trough collector using water-based green-synthesized nanofluids. Sol Energy. 2018;170:658–70. https://doi.org/10.1016/j.solener.2018.06.012.

    Article  CAS  Google Scholar 

  29. Fathy M, Hassan H, Salem AM. Experimental study on the effect of coupling parabolic trough collector with double slope solar still on its performance. Sol Energy. 2018;163:54–61. https://doi.org/10.1016/j.solener.2018.01.043.

    Article  Google Scholar 

  30. Bellos E, Tzivanidis C, Belessiotis V. Daily performance of parabolic trough solar collectors. Sol Energy. 2017;158:663–78. https://doi.org/10.1016/j.solener.2017.10.038.

    Article  Google Scholar 

  31. Sallaberry F, Valenzuela L, Palacin LG. On-site parabolic-trough collector testing in solar thermal power plants: Experimental validation of a new approach developed for the IEC 62862–3-2 standard. Sol Energy. 2017;155:398–409. https://doi.org/10.1016/j.solener.2017.06.045.

    Article  Google Scholar 

  32. Farooq M, Farhan M, Ahmad G, ul Tahir ZR, Usman M, Sultan M, et al. Thermal performance enhancement of nanofluids based parabolic trough solar collector (NPTSC) for sustainable environment. Alexandria Eng J. 2022;61:8943–53. https://doi.org/10.1016/j.aej.2022.02.029.

    Article  Google Scholar 

  33. Chafie M, Ben Aissa MF, Guizani A. Energetic end exergetic performance of a parabolic trough collector receiver: an experimental study. J Clean Prod. 2018;171:285–96. https://doi.org/10.1016/j.jclepro.2017.10.012.

    Article  Google Scholar 

  34. Gomna A, N’Tsoukpoe KE, Le Pierrès N, Coulibaly Y. Review of vegetable oils behaviour at high temperature for solar plants: Stability, properties and current applications. Sol Energy Mater Sol Cells. 2019;200:109956. https://doi.org/10.1016/j.solmat.2019.109956.

    Article  CAS  Google Scholar 

  35. Giaconia A, Iaquaniello G, Metwally AA, Caputo G, Balog I. Experimental demonstration and analysis of a CSP plant with molten salt heat transfer fluid in parabolic troughs. Sol Energy. 2020;211:622–32. https://doi.org/10.1016/j.solener.2020.09.091.

    Article  Google Scholar 

  36. Fredriksson J, Eickhoff M, Giese L, Herzog M. A comparison and evaluation of innovative parabolic trough collector concepts for large-scale application. Sol Energy. 2021;215:266–310. https://doi.org/10.1016/j.solener.2020.12.017.

    Article  Google Scholar 

  37. Martínez-Merino P, Alcántara R, Gómez-Larrán P, Carrillo-Berdugo I, Navas J. MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology. Renew Energy. 2022;188:721–30. https://doi.org/10.1016/j.renene.2022.02.069.

    Article  CAS  Google Scholar 

  38. Malekan M, Khosravi A, Syri S. Heat transfer modeling of a parabolic trough solar collector with working fluid of Fe3O4 and CuO/Therminol 66 nanofluids under magnetic field. Appl Therm Eng. 2019;163:114435. https://doi.org/10.1016/j.applthermaleng.2019.114435.

    Article  CAS  Google Scholar 

  39. Chavez Panduro EA, Finotti F, Largiller G, Lervåg KY. A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors. Appl Therm Eng. 2022;211:118346. https://doi.org/10.1016/j.applthermaleng.2022.118346.

    Article  CAS  Google Scholar 

  40. do Carmo Zidan D, Brasil Maia C, Reza SM. Performance evaluation of various nanofluids for parabolic trough collectors. Sustain Energy Technol Assessments. 2022;50:101865. https://doi.org/10.1016/j.seta.2021.101865.

    Article  Google Scholar 

  41. Abidi A, El-Shafay AS, Degani M, Guedri K, Mohammad Sajadi S, Sharifpur M. Improving the thermal-hydraulic performance of parabolic solar collectors using absorber tubes equipped with perforated twisted tape containing nanofluid. Sustain Energy Technol Assessments. 2022;52:102099. https://doi.org/10.1016/j.seta.2022.102099.

    Article  Google Scholar 

  42. Tiwari AK, Kumar V, Said Z, Paliwal HK. A review on the application of hybrid nanofluids for parabolic trough collector: Recent progress and outlook. J Clean Prod. 2021;292:126031. https://doi.org/10.1016/j.jclepro.2021.126031.

    Article  CAS  Google Scholar 

  43. Bellos E, Said Z, Tzivanidis C. The use of nanofluids in solar concentrating technologies: a comprehensive review. J Clean Prod. 2018;196:84–99. https://doi.org/10.1016/j.jclepro.2018.06.048.

    Article  CAS  Google Scholar 

  44. Bellos E, Tzivanidis C, Antonopoulos KA, Gkinis G. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew Energy. 2016;94:213–22. https://doi.org/10.1016/j.renene.2016.03.062.

    Article  CAS  Google Scholar 

  45. Kumar K, Kumar R, Bharj RS, Said Z. Effect of arc corrugation initiation on the thermo-hydraulic performance and entropy generation of the corrugated tube. Int Commun Heat Mass Transf. 2022;138:106335. https://doi.org/10.1016/j.icheatmasstransfer.2022.106335.

    Article  Google Scholar 

  46. Bellos E, Tzivanidis C. Investigation of a star flow insert in a parabolic trough solar collector. Appl Energy. 2018;224:86–102. https://doi.org/10.1016/j.apenergy.2018.04.099.

    Article  Google Scholar 

  47. Bellos E, Tzivanidis C, Tsimpoukis D. Multi-criteria evaluation of parabolic trough collector with internally finned absorbers. Appl Energy. 2017;205:540–61. https://doi.org/10.1016/j.apenergy.2017.07.141.

    Article  Google Scholar 

  48. Zhu X, Zhu L, Zhao J. Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver. Energy. 2017;141:1146–55. https://doi.org/10.1016/j.energy.2017.10.010.

    Article  Google Scholar 

  49. Jaramillo OA, Borunda M, Velazquez-Lucho KM, Robles M. Parabolic trough solar collector for low enthalpy processes: an analysis of the efficiency enhancement by using twisted tape inserts. Renew Energy. 2016;93:125–41. https://doi.org/10.1016/j.renene.2016.02.046.

    Article  Google Scholar 

  50. Yılmaz İH, Mwesigye A, Göksu TT. Enhancing the overall thermal performance of a large aperture parabolic trough solar collector using wire coil inserts. Sustain Energy Technol Assessments. 2020;39:100696. https://doi.org/10.1016/j.seta.2020.100696.

    Article  Google Scholar 

  51. Hachicha AA, Said Z, Rahman SMA, Al-Sarairah E. On the thermal and thermodynamic analysis of parabolic trough collector technology using industrial-grade MWCNT based nanofluid. Renew Energy. 2020;161:1303–17. https://doi.org/10.1016/j.renene.2020.07.096.

    Article  CAS  Google Scholar 

  52. Bellos E, Tzivanidis C. Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids. Sustain Energy Technol Assessments. 2018;26:105–15. https://doi.org/10.1016/j.seta.2017.10.005.

    Article  Google Scholar 

  53. Ehyaei MA, Ahmadi A, Assad MEH, Hachicha AA, Said Z. Energy, exergy and economic analyses for the selection of working fluid and metal oxide nanofluids in a parabolic trough collector. Sol Energy. 2019;187:175–84. https://doi.org/10.1016/j.solener.2019.05.046.

    Article  CAS  Google Scholar 

  54. Kazemian A, Salari A, Ma T, Lu H. Application of hybrid nanofluids in a novel combined photovoltaic/thermal and solar collector system. Sol Energy. 2022;239:102–16. https://doi.org/10.1016/j.solener.2022.04.016.

    Article  CAS  Google Scholar 

  55. Kalogirou SA. A detailed thermal model of a parabolic trough collector receiver. Energy. 2012;48:298–306. https://doi.org/10.1016/j.energy.2012.06.023.

    Article  Google Scholar 

  56. Allouhi A, Benzakour Amine M, Saidur R, Kousksou T, Jamil A. Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications. Energy Convers Manag. 2018;155:201–17. https://doi.org/10.1016/j.enconman.2017.10.059.

    Article  CAS  Google Scholar 

  57. Allouhi A, Benzakour Amine M, Kousksou T, Jamil A, Lahrech K. Yearly performance of low-enthalpy parabolic trough collectors in MENA region according to different sun-tracking strategies. Appl Therm Eng. 2018;128:1404–19. https://doi.org/10.1016/j.applthermaleng.2017.09.099.

    Article  Google Scholar 

  58. Lamrani B, Khouya A, Zeghmati B, Draoui A. Mathematical modeling and numerical simulation of a parabolic trough collector: a case study in thermal engineering. Therm Sci Eng Prog. 2018;8:47–54. https://doi.org/10.1016/j.tsep.2018.07.015.

    Article  Google Scholar 

  59. Lamrani B, Khouya A, Draoui A. Thermal performance of a parabolic trough collector under different climatic zones in Morocco. AIP Conf Proc. 2018;2056:20007. https://doi.org/10.1063/1.5084980.

    Article  Google Scholar 

  60. Lamrani B, Kuznik F, Draoui A. Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings. Renew Energy. 2020;162:411–26. https://doi.org/10.1016/j.renene.2020.08.038.

    Article  CAS  Google Scholar 

  61. Minea AA. Chapter 7 - Barriers and challenges in hybrid nanofluids development and implementation. In: Ali HM, editor. Hybrid nanofluids for convection heat transfer. Cambridge: Academic Press; 2020.

    Google Scholar 

  62. Hemmat Esfe M, Esfandeh S, Kamyab MH. Chapter 1 - History and introduction. In: Ali HM, editor. Hybrid nanofluids for convection heat transfer. Cambridge: Academic Press; 2020.

    Google Scholar 

  63. Jamil F, Ali HM. Chapter 6 - Applications of hybrid nanofluids in different fields. In: Ali HM, editor. Hybrid nanofluids for convection heat transfer. Cambridge: Academic Press; 2020.

    Google Scholar 

  64. Shah TR, Koten H, Ali HM. Chapter 5 - Performance effecting parameters of hybrid nanofluids. In: Ali HM, editor. Hybrid nanofluids for convection heat transfer. Cambridge: Academic Press; 2020.

    Google Scholar 

  65. Babar H, Sajid MU, Ali HM. Chapter 4 - Hybrid nanofluids as a heat transferring media. In: Ali HM, editor. Hybrid nanofluids for convection heat transfer. Cambridge: Academic Press; 2020.

    Google Scholar 

  66. Alfellag M. Modeling and exprimental investigation of parabolic trough solar collector. Embry-Riddle Aeronautical University –Daytona Beach. 2014

  67. Mercan H. Chapter 3 - Thermophysical and rheological properties of hybrid nanofluids. In: Ali HM, editor. Hybrid nanofluids for convection heat transfer. Cambridge: Academic Press; 2020.

    Google Scholar 

  68. Afrand M, Ranjbarzadeh R. Chapter 2 - Hybrid nanofluids preparation method. In: Ali HM, editor. Hybrid nanofluids for convection heat transfer. Cambridge: Academic Press; 2020.

    Google Scholar 

  69. Eshgarf H, Kalbasi R, Maleki A, Shadloo MS, Karimipour A. A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. J Therm Anal Calorim. 2021;144:1959–83. https://doi.org/10.1007/s10973-020-09998-w.

    Article  CAS  Google Scholar 

  70. Shah TR, Ali HM. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review. Sol Energy. 2019;183:173–203. https://doi.org/10.1016/j.solener.2019.03.012.

    Article  CAS  Google Scholar 

  71. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.021.

    Article  CAS  Google Scholar 

  72. Babar H, Ali HM. Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges. J Mol Liq. 2019;281:598–633. https://doi.org/10.1016/j.molliq.2019.02.102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ibtissem Saddouri or Oussama Rejeb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saddouri, I., Rejeb, O., Semmar, D. et al. A comparative analysis of parabolic trough collector (PTC) using a hybrid nanofluid. J Therm Anal Calorim 148, 9701–9721 (2023). https://doi.org/10.1007/s10973-023-12342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12342-7

Keywords

Navigation