Skip to main content
Log in

Thermal energy harvesting of highly conductive graphene-enhanced paraffin phase change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solar energy is the most plentiful renewable energy source that has the capability to keep up with the growing demand. When the sun’s energy is not available, thermal energy storage (TES) using phase change material (PCM) is a promising technique for storage and utilization. However, PCM’s low thermal conductivity may limit its use. The use of nanomaterials to enhance the thermal conductivity is one of the prominent solutions to overcome this issue. This research work reports that graphene nanoparticles (0.1%, 0.3%, 0.5%, 0.7% and 1% mass) enhanced paraffin wax (PW) to improve the thermophysical properties and transmittance capability. Thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FTIR) and ultra-violet visible spectroscope (UV–VIS) were used for the characterization of the base PCM and nano-enhanced phase change materials (NePCM) composites. A significant improvement of 110% in thermal conductivity was obtained at 0.7% mass ratio compared to base PW without compromising the prepared composites’ latent heat storage (LHS) capacity. TGA and FTIR outcomes demonstrated excellent thermal and chemical stability, respectively. To check the thermal reliability of composite, the PW and nanocomposite were subjected to repeated thermal cycling. The outcome evidence that the NePCM composite had consistent thermal energy storage properties even after repeated thermal cycles. The composite’s light transmission was drastically lowered by 56.34% (PW/Gr-0.5) compared to base PW, resulting in PW/Gr composite has better thermal reliability in relation to thermal conductivity and LHS than base PCM, which can be used specifically in photovoltaic thermal systems and TES.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

C.B.:

Carbon black

DSC:

Differential scanning calorimeter

EDX:

Energy dispersive X-ray spectroscopy

E.T.:

Electron transport

FESEM:

Field emission scanning electron microscopy

FT-IR:

Fourier transform infrared spectroscopy

G:

Graphene

LHS:

Latent heat storage

MWCNT:

Multiwall carbon nanotubes

NePCM:

Nano-enhanced phase change materials

PCM:

Phase change materials

PV:

Photovoltaics

PVT:

Photovoltaic thermal

PW:

Paraffin wax

PW/Gr:

Paraffin wax–graphene composite

PT:

Phonon transport

SDBS:

Sodium dodecyl benzene sulfate

SWCNT:

Single-wall carbon nanotube

TGA:

Thermal gravimetric analyzer

TiO2 :

Titanium Oxide

T.P.:

Thermophysical properties

UV–VIS:

Ultra-violet visible spectroscopy

TES:

Thermal energy storage

α :

Absorbance

η :

Efficiency

µ :

Micron

ɸ :

Concentration ratio

:

Density Kg m-3

PWG0.1:

Paraffin wax with 0.1% graphene

PWG0.3:

Paraffin wax with 0.3% graphene

PWG0.5:

Paraffin wax with 0.5% graphene

PWG0.7:

Paraffin wax with 0.7% graphene

PWG1:

Paraffin wax with 1% graphene

References

  1. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R. The role of renewable energy in the global energy transformation. Energy Strateg Rev. 2019;24:38–50. https://doi.org/10.1016/j.esr.2019.01.006.

    Article  Google Scholar 

  2. Bin Shahid U, Abdala A. A critical review of phase change material composite performance through figure-of-merit analysis: graphene vs Boron Nitride. Energy Stor Mater. 2021;34:365–87. https://doi.org/10.1016/j.ensm.2020.10.004.

    Article  Google Scholar 

  3. Wang Q, Yang L, Song J. Preparation, thermal conductivity, and applications of nano-enhanced phase change materials (NEPCMs) in solar heat collection: a review. J Energy Storage. 2023;63:107047. https://doi.org/10.1016/j.est.2023.107047.

    Article  Google Scholar 

  4. Wu S, Yan T, Kuai Z, Pan W. Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Storage Mater. 2020;25:251–95. https://doi.org/10.1016/j.ensm.2019.10.010.

    Article  Google Scholar 

  5. Jouhara H, Żabnieńska-Góra A, Khordehgah N, Ahmad D, Lipinski T. Latent thermal energy storage technologies and applications: a review. Int J Thermofluids. 2020. https://doi.org/10.1016/j.ijft.2020.100039.

    Article  Google Scholar 

  6. Dhaidan NS, Kokz SA, Lafta F, Kadhim A, Younis O, Al-mousawi FN. Review of solidification of phase change materials dispersed with nanoparticles in different containers. J Energy Storage. 2022;51:104271. https://doi.org/10.1016/j.est.2022.104271.

    Article  Google Scholar 

  7. Yang L, NanHuang J, Zhou F. Thermophysical properties and applications of nano-enhanced PCMs: an update review. Energy Convers Manag. 2020;214:112876. https://doi.org/10.1016/j.enconman.2020.112876.

    Article  CAS  Google Scholar 

  8. Diaconu BM, Cruceru M, Anghelescu L. “A critical review on heat transfer enhancement techniques in latent heat storage systems based on phase change materials. Passive and active techniques, system designs and optimization. J Energy Storage. 2023;61:106830. https://doi.org/10.1016/j.est.2023.106830.

    Article  Google Scholar 

  9. Al-Ahmed A, Mazumder MAJ, Salhi B, Sari A, Afzaal M, Al-Sulaiman FA. Effects of carbon-based fillers on thermal properties of fatty acids and their eutectics as phase change materials used for thermal energy storage: a Review. J Energy Storage. 2021;35:102329. https://doi.org/10.1016/j.est.2021.102329.

    Article  Google Scholar 

  10. Ali I, Samykano M, Pandey AK, Kadirgama K. Binary composite (TiO2-Gr) based nano-enhanced organic phase change material : effect on thermophysical properties. J Energy Storage. 2022;51(5):104526. https://doi.org/10.1016/j.est.2022.104526.

    Article  Google Scholar 

  11. Renteria JD, Nika DL, Balandin AA. Graphene thermal properties: applications in thermal management and energy storage. Appl Sci. 2014. https://doi.org/10.3390/app4040525.

    Article  Google Scholar 

  12. George M, Pandey AK, Rahim NA, Tyagi VV, Shahabuddin S, Saidur R. Long-term thermophysical behavior of paraffin wax and paraffin wax/polyaniline (PANI) composite phase change materials. J Energy Storage. 2020;31:101568. https://doi.org/10.1016/j.est.2020.101568.

    Article  Google Scholar 

  13. Zeng JL, et al. Preparation and thermal properties of exfoliated graphite/erythritol/mannitol eutectic composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2018;178:84–90. https://doi.org/10.1016/j.solmat.2018.01.012.

    Article  CAS  Google Scholar 

  14. J. Kaur et al. (2019) The effects of graphene on microstructural and thermal properties of calcium chloride hexahydrate PCM. Proc Conf Ind Commer Use Energy ICUE https://doi.org/10.23919/ICUE-GESD.2018.8635788.

  15. Masoumi H, Haghighikhoshkhoo R, Mirfendereski SM. Modification of physical and thermal characteristics of stearic acid as a phase change materials using TiO2-nanoparticles. Thermochim Acta. 2019;675:9–17. https://doi.org/10.1016/j.tca.2019.02.015.

    Article  CAS  Google Scholar 

  16. Ezhumalai DS, Sriharan G, Harikrishnan S. Improved thermal energy storage behavior of CuO/palmitic acid composite as phase change material. Mater Today Proc. 2018;5(6):14618–27. https://doi.org/10.1016/j.matpr.2018.03.053.

    Article  CAS  Google Scholar 

  17. Bahiraei F, Fartaj A, Nazri GA. Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications. Energy Convers Manag. 2017;153:115–28. https://doi.org/10.1016/j.enconman.2017.09.065.

    Article  CAS  Google Scholar 

  18. Mekaddem N, Ben Ali S, Fois M, Hannachi A. Paraffin/expanded perlite/plaster as thermal energy storage composite. Energy Procedia. 2019;157:1118–29. https://doi.org/10.1016/j.egypro.2018.11.279.

    Article  CAS  Google Scholar 

  19. Lin J, et al. Enhancing the solar absorption capacity of expanded graphite-paraffin wax composite phase change materials by introducing carbon nanotubes additives. Surf Interf. 2022. https://doi.org/10.1016/j.surfin.2022.101871.

    Article  Google Scholar 

  20. Lu B, Zhang Y, Zhang J, Zhu J, Zhao H. Preparation, optimization and thermal characterization of paraffin / nano-Fe3O4 composite phase change material for solar thermal energy storage. J Energy Storage. 2022;46:103928. https://doi.org/10.1016/j.est.2021.103928.

    Article  Google Scholar 

  21. Sun X, Liu L, Mo Y, Li J, Li C. Enhanced thermal energy storage of a paraffin-based phase change material (PCM) using nano carbons. Appl Therm Eng. 2020;181:115992. https://doi.org/10.1016/j.applthermaleng.2020.115992.

    Article  CAS  Google Scholar 

  22. Vivekananthan M, Amirtham VA. Characterisation and thermophysical properties of graphene nanoparticles dispersed erythritol PCM for medium temperature thermal energy storage applications. Thermochim Acta. 2019;676:94–103. https://doi.org/10.1016/j.tca.2019.03.037.

    Article  CAS  Google Scholar 

  23. Colla L, Fedele L, Mancin S, Danza L, Manca O. Nano-PCMs for enhanced energy storage and passive cooling applications. Appl Therm Eng. 2017;110:584–9. https://doi.org/10.1016/j.applthermaleng.2016.03.161.

    Article  CAS  Google Scholar 

  24. Harish S, Orejon D, Takata Y, Kohno M. Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets. Appl Therm Eng. 2015;80:205–11. https://doi.org/10.1016/j.applthermaleng.2015.01.056.

    Article  CAS  Google Scholar 

  25. Wang J, Xie H, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta. 2009;488(1–2):39–42. https://doi.org/10.1016/j.tca.2009.01.022.

    Article  CAS  Google Scholar 

  26. Dai C, Yang X, Xie H. One-step synthesis of reduced graphite oxide–silver nanocomposite. Mater Res Bull. 2011;46(11):2004–8. https://doi.org/10.1016/j.materresbull.2011.07.013.

    Article  CAS  Google Scholar 

  27. Laghari IA, Samykano M, Pandey AK, Kadirgama K, Tyagi VV. Advancements in PV-thermal systems with and without phase change materials as a sustainable energy solution: energy, exergy and exergoeconomic (3E) analytic approach. Sustain Energy Fuels. 2020;4(10):4956–87. https://doi.org/10.1039/d0se00681e.

    Article  CAS  Google Scholar 

  28. Du K, Calautit J, Wang Z, Wu Y, Liu H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl Energy. 2018;220:242–73. https://doi.org/10.1016/j.apenergy.2018.03.005.

    Article  CAS  Google Scholar 

  29. Mohammadabadi FH, Masoudpanah SM, Alamolhoda S, Koohdar HR. Structure, magnetic, and microwave absorption properties of (MnNiCu)0.9−xCoxZn0.1Fe2O4/graphene composite powders. J Alloys Compd. 2021;878:160337. https://doi.org/10.1016/j.jallcom.2021.160337.

    Article  CAS  Google Scholar 

  30. Wang Y, Ji H, Shi H, Zhang T, Xia T. Fabrication and characterization of stearic acid / polyaniline composite with electrical conductivity as phase change materials for thermal energy storage. Energy Convers Manag. 2015;98:322–30. https://doi.org/10.1016/j.enconman.2015.03.115.

    Article  CAS  Google Scholar 

  31. urRehman T, Ali HM. Experimental study on the thermal behavior of RT-35HC paraffin within copper and Iron-Nickel open cell foams: Energy storage for thermal management of electronics. Int J Heat Mass Transf. 2020;146:118852. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118852.

    Article  CAS  Google Scholar 

  32. Zeng JL, et al. Myristic acid/polyaniline composites as form stable phase change materials for thermal energy storage. Sol Energy Mater Sol Cells. 2013;114:136–40. https://doi.org/10.1016/j.solmat.2013.03.006.

    Article  CAS  Google Scholar 

  33. Shahabuddin S, Sarih NM, Mohamad S, Ching JJ. rTiO3 nanocube-doped polyaniline nanocomposites with enhanced photocatalytic degradation of methylene blue under visible light. Polymers (Basel). 2016. https://doi.org/10.3390/polym8020027.

    Article  PubMed  Google Scholar 

  34. Kim CH, Joo CK, Chun HJ, Yoo BR, Il Noh D, Shim YB. “Instrumental studies on silicone oil adsorption to the surface of intraocular lenses. Appl Surf Sci. 2012;262:146–52. https://doi.org/10.1016/j.apsusc.2012.03.113.

    Article  CAS  Google Scholar 

  35. Zhou Y, et al. Multifunctional ZnO/polyurethane-based solid-solid phase change materials with graphene aerogel. Sol Energy Mater Sol Cells. 2019;193:13–21. https://doi.org/10.1016/j.solmat.2018.12.041.

    Article  CAS  Google Scholar 

  36. Bhattacharya P, Saha SK, Yadav A, Phelan PE, Prasher RS. Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys. 2004;95(11):6492–4. https://doi.org/10.1063/1.1736319.

    Article  CAS  Google Scholar 

  37. George M, Pandey AK, Abd Rahim N, Tyagi VV, Shahabuddin S, Saidur R. A novel polyaniline (PANI)/ paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability. Sol Energy. 2020;204:448–58. https://doi.org/10.1016/j.solener.2020.04.087.

    Article  CAS  Google Scholar 

  38. Navarrete N, et al. Thermal energy storage of molten salt based nanofluid containing nano-encapsulated metal alloy phase change materials. Energy. 2018. https://doi.org/10.1016/j.energy.2018.11.037.

    Article  Google Scholar 

  39. Gueymard CA. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol Energy. 2004;76(4):423–53. https://doi.org/10.1016/j.solener.2003.08.039.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universiti Malaysia Pahang (UMP) for the financial support under grant RDU233002 RDU192208 and RDU210351. The authors are also thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU/RG/SERC/11/7) and Sunway University through Sunway University International Research Network Grant Scheme 2.0 (IRNGS2.0) (STRIRNGS- SET-RCNMET-01-2021).

Author information

Authors and Affiliations

Authors

Contributions

IAL involved in data curation, investigation, formal analysis, and writing—original draft. AKP involved in conceptualization, methodology, formal analysis, validation, supervision, and project administration. MS involved in validation, review and editing, methodology, supervision, and project administration. BA involved in review and editing and methodology. KK involved in writing—review and editing and supervision. KS involved in validation and writing—review and editing. VVT involved in methodology and validation.

Corresponding authors

Correspondence to A. K. Pandey or M. Samykano.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laghari, I.A., Pandey, A.K., Samykano, M. et al. Thermal energy harvesting of highly conductive graphene-enhanced paraffin phase change material. J Therm Anal Calorim 148, 9391–9402 (2023). https://doi.org/10.1007/s10973-023-12336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12336-5

Keywords

Navigation