Skip to main content
Log in

Thermal and radiation stability of POSS by the presence of hydrocarbon substituents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal and radiation stabilities of POSS modified with various hydrocarbon substituents are studied by chemiluminescence. The material answers are different in relation with the electronic densities that exist in the modified structures. The oxidative degradation achieved at four γ-doses: 0, 25, 50 and 100 kGy present unlike behavior, because the substituents interact with the frame of silsesquioxanes and the scission of –Si–O–moieties exhibit different levels. The comparison of nonisothermal spectra reveals the generation of hydroperoxides at two different temperatures that demonstrates the induction of degradation by means of the variation of electronic densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang C, Zhang J, Xu T, Sima H, Hou J. Effects of polyhedral silsesquioxane (POSS) on thermal and mechanical properties of polysiloxane. Materials. 2020;13:4570. https://doi.org/10.3390/ma13204570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zaharescu T, Pielichowski K. Stabilization effect of POSS nanoparticles on gamma-irradiated polyurethane. J Therm Anal Calorim. 2016;124:767–74. https://doi.org/10.1007/s10973-015-5191-y.

    Article  CAS  Google Scholar 

  3. Lazzara G, Cavallaro G, Panchal A, Fakhrullin R, Stavitskaya A, Vinokurov V, Lvov Y. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr Opin Colloid In. 2018;35:42–50. https://doi.org/10.1016/j.cocis.2018.01.002.

    Article  CAS  Google Scholar 

  4. Blanco I, Bottino FA, Bottino P, Chiacchio MA. A novel three-cages POSS molecule: synthesis and thermal behaviour. J Therm Anal Calorim. 2018;134:1337–44. https://doi.org/10.1007/s10973-018-7206-y.

    Article  CAS  Google Scholar 

  5. Devaraju S, Alagar M. POSS nanoparticles: Synthesis, characterization, and properties. In: Thomas S, Somasekharan L, editors. Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites. Amsterdam: Elsevier; 2021. p. 1–27.

    Google Scholar 

  6. Zaharescu T, Blanco I, Mariş M. Structural configuration-radiation stability relationship in the degradation of dumbbell POSSs. Radiat Phys Chem. 2022;193:110001. https://doi.org/10.1016/j.radphyschem.2022.110001.

    Article  CAS  Google Scholar 

  7. Bai J, Zhang Y, Zhang W, Ma X, Zhu Y, Zhao X, Fu Y. Synthesis and characterization of molecularly imprinted polymer microspheres functionalized with POSS. Appl Surf Sci. 2020;511:145506. https://doi.org/10.1016/j.apsusc.2020.145506.

    Article  CAS  Google Scholar 

  8. Sarkar B, Saha B. Interface modification of POSS polymer nanocomposites. In: Thomas S, Somasekharan L, editors. Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites. Amsterdam: Elsevier; 2021. p. 53–70.

    Chapter  Google Scholar 

  9. Kuoa S-W, Chang F-C. POSS related polymer nanocomposites. Prog Polym Sci. 2011;36:1649–96. https://doi.org/10.1016/j.progpolymsci.2011.05.002.

    Article  CAS  Google Scholar 

  10. Zhang W, Müller AHE. Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci. 2013;38:1121–62. https://doi.org/10.1016/j.progpolymsci.2013.03.002.

    Article  CAS  Google Scholar 

  11. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process. Austr J Chem. 2005;58:379–410. https://doi.org/10.1071/CH05072.

    Article  CAS  Google Scholar 

  12. Niemczyk A, Dziubek K, Sacher-Majewskal B, Czaja K, Dutkiewicz M, Marciniec B. Study of thermal properties of polyethylene and polypropylene nanocomposites with long alkyl chain-substituted POSS fillers. J Therm Anal Calorim. 2016;125:1287–99.

    Article  CAS  Google Scholar 

  13. Majka TM, Raftopoulos KN, Pielichowski K. The influence of POSS nanoparticles on selected thermal properties of polyurethane-based hybrids. J Therm Anal Calorim. 2018;133:289–301.

    Article  CAS  Google Scholar 

  14. Blanco I, Abate L, Bottino P, Chiacchio MA. Synthesis and thermal characterization of monosubstituted octaphenyl POSS/polystyrene nanocomposites. J Therm Anal Calorim. 2019;138:2357–65.

    Article  CAS  Google Scholar 

  15. Shi M, Ao Y, Yu L, Sheng L, Li S, Peng J, Chen H, Huang W, Li J, Zhai M. Epoxy-POSS/silicone rubber nanocomposites with excellent thermal stability and radiation resistance. Chin Chem Lett. 2022;33:3534–8.

    Article  CAS  Google Scholar 

  16. Blanco I, Abate L, Bottino LA. Synthesis and thermal behaviour of phenyl-substituted POSSs linked by aliphatic and aromatic bridges. J Therm Anal. 2018;131:843–51. https://doi.org/10.1007/s10973-017-6608-6.

    Article  CAS  Google Scholar 

  17. Blanco I. The rediscovery of POSS: a molecule rather than a filler. Polymers. 2018;10:904. https://doi.org/10.3390/polym10080904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lichtenhan JD, Pielichowski K, Blanco I. POSS-based polymers. Polymers. 2019;11:1727. https://doi.org/10.3390/polym11101727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tamburaci S, Tihminlioglu F. Chitosan-hybrid poss nanocomposites for bone regeneration: the effect of poss nanocage on surface, morphology, structure and in vitro bioactivity. Int J Biol Macromol. 2020;142:643–57.

    Article  CAS  PubMed  Google Scholar 

  20. Jung C-H, Hwang I-T, Jung C-H, Choi J-H. Preparation of flexible PLA/PEG-POSS nanocomposites by melt blending and radiation crosslinking. Rad Phys Chem. 2014;102:23–8.

    Article  CAS  Google Scholar 

  21. Rezakazemi M, Vatani A, Mohammadi T. Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng. 2016;30:10–8.

    Article  CAS  Google Scholar 

  22. Blanco I, Bottino FA, Abate L. Influence of n-alkyl substituents on the thermal behaviour of polyhedral oligomeric Silsesquioxanes (POSSs) with different cage’s periphery. Thermochim Acta. 2016;623:50–7.

    Article  CAS  Google Scholar 

  23. Kornacka EM (2017) Radiation-induced oxidation of polymers. In: Sun, Y., Chmielewski A, (eds) Trends in ionizing radiation in material processing, INCT–Warsaw, Ch. 8.

  24. Rychlý J, Rychlá NI, Vanko V, Preťo J, Janigová I, Chodák I. Thermooxidative stability of hot melt adhesives based on metallocene polyolefins grafted with polar acrylic acid moieties. Polym Test. 2020;85:106422.

    Article  Google Scholar 

  25. Zlatkevich L (1987) Thermoluminescence in Polymers Induced by Radiation. In: Polymer Properties and applications series, Cantow H-J, Harwood HJ, Kennedy JP, Ledwith A, Meissner J, Okamura S, Henrici-Olive G, Olive S (eds), Springer

  26. Zaharescu T, Blanco I, Mariş M. Structural configuration-radiation stability relationship in the degradation of dumbbelled POSSs. Radiat Phys Chem. 2022;193:110001.

    Article  CAS  Google Scholar 

Download references

Funding

Not any financial support sustained this study.

Author information

Authors and Affiliations

Authors

Contributions

The both authors contributed equally to the planning of study, the preparation and measurements of samples, the result interpretation and the writing of manuscript.

Corresponding author

Correspondence to Traian Zaharescu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 193 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharescu, T., Blanco, I. Thermal and radiation stability of POSS by the presence of hydrocarbon substituents. J Therm Anal Calorim 148, 12981–12986 (2023). https://doi.org/10.1007/s10973-023-12327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12327-6

Keywords

Navigation