Skip to main content
Log in

Pulsed film cooling on a complete turbine blade: steady, sinusoidal and square injections

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of the curvature of the blade and the existence of pulsation in compressor injection air highlights the importance of pulsating flow analysis on a complete turbine blade. Sinusoidal and square pulsed film cooling on leading-edge (LE), pressure and suction sides (PS and SS) of a complete NASA C3X blade is numerically investigated. The performance of film cooling is studied for five blowing ratios from 0.5 to 2.5 at the frequency of 50 Hz and three of the mainstream Reynolds numbers (Re). The numerical simulations have been performed by the \(SST k{-}\omega\) model. The results showed that film effectiveness is different for the two considered pulse flows. The most value of averaged film effectiveness is obtained on PS, in which its minimum happens at the LE. For the sinusoidal pulse, the average film effectiveness was almost two times more than the square wave. With increasing the blowing ratio, pulsed film cooling effectiveness is reduced at LE and PS but at SS this trend was reversed. The averaged centerline pulsed film effectiveness on the LE and PS at the blowing ratio of 0.5 and for SS at the blowing ratio of 2.5 was maximum. The effect of mainstream Reynolds number variations on pulsed film cooling had the most effect on PS. At LE and SS, at \(Re = 74652\), film effectiveness was the most value while at PS for \(Re = 111978\) the largest effectiveness was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

D :

Hole diameter (m)

f :

Frequency (Hz)

Gr :

Grashof number

L/D :

Length-to-hole diameter ratio

P :

Pressure (Pa)

PS:

Pressure side

p :

Periodicity (s)

T:

Temperature (K)

t :

Time (s)

x :

Stream-wise coordinate (m)

y :

Pitch-wise coordinate (m)

z :

Span-wise coordinate (m)

u :

Velocity \(\left( {ms^{ - 1} } \right)\)

M :

Blowing ratio

LE:

Leading edge

S :

Source term

SS:

Suction side

K :

Thermal conductivity \(\left( {Wm^{ - 1} K^{ - 1} } \right)\)

\(C_{\text{p}}\) :

Specific heat \(\left( {Jkg^{ - 1} K^{ - 1} } \right)\)

\(C_{\text{ax}}\) :

Axial chord length (m)

Re :

Reynolds number

ɳ :

Film cooling effectiveness

μ :

Viscosity (Pa.s)

ρ :

Density \( \left( {kgm^{ - 3} } \right)\)

ϕ :

Phase

aw :

Adiabatic wall index

f :

Cooling flow index

ins :

Instant

i,j :

Index

m :

Mainstream air index

References

  1. Qiu D, Wang C, Luo L, Wang S, Zhao Z, Wang Z. On heat transfer and flow characteristics of jets impinging onto a concave surface with varying jet arrangements. J Therm Anal Calorim. 2020;141(1):57–8. https://doi.org/10.1007/s10973-019-08901-6.

    Article  CAS  Google Scholar 

  2. Tian K, Wang J, Liu C, et al. Effect of blockage configuration on film cooling with and without mist injection. Energy. 2018;153:661–70. https://doi.org/10.1016/j.energy.2018.04.050.

    Article  Google Scholar 

  3. Zhou W, Hu H. A novel sand-dune-inspired design for improved film cooling performance. Int J Heat Mass Transf. 2017;110:908–20. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.091.

    Article  Google Scholar 

  4. Kazemi Kelishami M, Lakzian E. Optimization of the blowing ratio for film cooling on a flat plate. Int J Num Methods Heat Fluid Flow. 2017;27:104–19. https://doi.org/10.1108/HFF-07-2015-0284.

    Article  Google Scholar 

  5. Nemdili F, Azzi A, Jubran BA. Numerical investigation of the influence of hole imperfection on film cooling effectiveness. Int J Num Methods Heat Fluid Flow. 2011;21:46–60. https://doi.org/10.1108/09615531111095067.

    Article  Google Scholar 

  6. Park SH, Kang YJ, Seo HJ, et al. Experimental optimization of a fan-shaped film cooling hole with 30 degrees-injection angle and 6-hole length-to-diameter ratio. Int J Heat Mass Transf. 2019;144:118652. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118652.

    Article  Google Scholar 

  7. Zhou Z, Li H, Wang H, et al. Film cooling of cylindrical holes on turbine blade suction side near leading edge. Int J Heat Mass Transf. 2019;141:669–79. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.028.

    Article  Google Scholar 

  8. Liu R, Li H, Lin J, You R, Tao Z. An experimental and numerical investigation of film cooling effectiveness on a gas turbine blade tip region. Int J Therm Sci. 2022;177:107544. https://doi.org/10.1016/j.ijthermalsci.2022.107544.

    Article  Google Scholar 

  9. Zhang L, Qian B, Zhang C, Mao J, Fan H. Numerical study on the cooling characteristics of cat-ear-shaped film-cooling holes on turbine blades. Case Stud Therm Eng. 2022;36:102050. https://doi.org/10.1016/j.csite.2022.102050.

    Article  Google Scholar 

  10. Park JS, Lee DH, Rhee DH, et al. Heat transfer and film cooling effectiveness on the squealer tip of a turbine blade. Energy. 2014;72:331–43. https://doi.org/10.1016/j.energy.2014.05.041.

    Article  Google Scholar 

  11. Kukutla PR, Prasad BV, Tarigonda H, Reddy DR. Optimization of film hole row locations of a nozzle guide vane using network approach. J Therm Anal Calorim. 2021;145:2661–74. https://doi.org/10.1007/s10973-020-09841-2.

    Article  CAS  Google Scholar 

  12. Zhang SC, Zhang JZ, Yu JJ, Tan XM, Wang LM. Film cooling performance of multi-row casing injection in a turbine-rotor cascade under blade passing. Therm Sci Eng Prog. 2023;16:101672. https://doi.org/10.1016/j.tsep.2023.101672.

    Article  Google Scholar 

  13. Gao WJ, Yue ZF, Li L, et al. Numerical simulation on film cooling with compound angle of blade leading edge model for gas turbine. Int J Heat Mass Transf. 2017;115:839–55. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.105.

    Article  Google Scholar 

  14. Li HW, Zhang DW, Han F, Guo H, Ding XF. Experimental investigation on the effect of hole diameter on the leading edge region film cooling of a twist turbine blade under rotation conditions. Appl Therm Eng. 2021;184:116386. https://doi.org/10.1016/j.applthermaleng.2020.116386.

    Article  Google Scholar 

  15. Kafaei A, Salmani F, Lakzian E, Wróblewski W, Vlaskin MS, Deng Q. The best angle of hot steam injection holes in the 3D steam turbine blade cascade. Int J Therm Sci. 2022;173:107387. https://doi.org/10.1016/j.ijthermalsci.2021.107387.

    Article  Google Scholar 

  16. Kafaei A, Lakzian E, Ahmadi G, Dykas S. An investigation of finding the best arrangement of hot steam injection holes in the 3D steam turbine blade cascade. J. Therm. Analy, Calori. 2022; 1–18. https://doi.org/10.1007/s10973-022-11242-6

  17. Kukutla PR, Prasad BV. Numerical study on the secondary air performance of the film holes for the combined impingement and film cooled first stage of high pressure gas turbine nozzle guide vane. Int J Turbo Jet-Engines. 2020;37(3):221–40. https://doi.org/10.1515/tjj-2017-0022.

    Article  Google Scholar 

  18. Jung IS, Lee JS, Ligrani PM. Effects of bulk flow pulsations on film cooling with compound angle holes: heat transfer coefficient ratio and heat flux ratio. J Turbomach. 2001;124:142–51. https://doi.org/10.1115/1.1400110.

    Article  Google Scholar 

  19. Liu Y, Luo Y. Transient simulation of pulsed purge film cooling on flow and thermal characteristics of a turbine endwall. Appl Therm Eng. 2019;161:114208. https://doi.org/10.1016/j.applthermaleng.2019.114208.

    Article  Google Scholar 

  20. Rutledge JL, King PI, Rivir RB. Influence of film cooling unsteadiness on turbine blade leading edge heat flux. J Eng Gas Turb Power. 2012;134:071901. https://doi.org/10.1115/1.4005978.

    Article  Google Scholar 

  21. Muldoon F, Acharya S. DNS study of pulsed film cooling for enhanced cooling effectiveness. Int J Heat Mass Transf. 2009;52:3118–27. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.030.

    Article  CAS  Google Scholar 

  22. Hosseini Baghdad Abadi SM, Zirak S, Rajabi Zargar Abadi M. Numerical simulation of the sinusoidal wave pulsed film cooling effectiveness due to the changing cooling injection parameters. Modares Mech Eng. 2019;19(1):191–200.

    Google Scholar 

  23. Hosseini Baghdad Abadi SM, Zirak S, Abadi RZ, M. Effect of pulsating injection and mainstream attack angle on film cooling performance of a gas turbine blade. Physics Fluids. 2020;32:117102. https://doi.org/10.1063/5.002911010.

    Article  CAS  Google Scholar 

  24. Zaza G, Hammou AD, Benchatti A, Saiah H. Fault detection method on a compressor rotor using the phase variation of the vibration signal. Int J Eng. 2017;30:1176–81. https://doi.org/10.5829/ije.2017.30.08b.09.

    Article  Google Scholar 

  25. Chekardovskiy MN, Chekardovskiy SM, Razboynikov AA, Ponomareva TG. A frequency model of vibrational processes in gas-turbine drives of compressor stations of main gas pipelines. In IOP Conference Series: Materi Sci Eng. 2016;154:012023. https://doi.org/10.1088/1757-899X/154/1/012023.

    Article  Google Scholar 

  26. Kabral R. Turbocharger aeroacoustics and optimal damping of sound. PhD thesis, KTH Royal Instit. Tech. 2017. https://kth.diva-portal.org/smash/get/diva2:1096314/FULLTEXT01.pdf

  27. Hosseini Baghdad Abadi SM, Zirak S, Rajabi Zargar Abadi M. Effect of pulse injection on film cooling performance: Experimental and numerical investigation. Proceed Inst Mech Eng. Part C: J Mech Eng Sci. 2022;236:5705–18. https://doi.org/10.1177/09544062211061263.

    Article  Google Scholar 

  28. Coulthard SM, Volino RJ, Flack KA. Effect of jet pulsing on film cooling—part I: effectiveness and flow-field temperature results. J Turbomach. 2007;129:232–46. https://doi.org/10.1115/1.2437231.

    Article  Google Scholar 

  29. Coulthard SM, Volino RJ, Flack KA. Effect of jet pulsing on film cooling: part 2—heat transfer results. J Turbomach. 2008;129:247–57. https://doi.org/10.1115/1.2437230.

    Article  Google Scholar 

  30. Mohammadpour J, Zolfagharian MM, Mujumdar AS, et al. Heat transfer under composite arrangement of pulsed and steady turbulent submerged multiple jets impinging on a flat surface. Int J Therm Sci. 2014;86:139–47. https://doi.org/10.1016/j.ijthermalsci.2014.07.004.

    Article  Google Scholar 

  31. Zargarabadi MR, Rezaei E, Yousefi-Lafouraki B. Numerical analysis of turbulent flow and heat transfer of sinusoidal pulsed jet impinging on an asymmetrical concave surface. Appl Therm Eng. 2018;128:578–85. https://doi.org/10.1016/j.applthermaleng.2017.09.059.

    Article  Google Scholar 

  32. Qingzong X, Qiang D, Pei W, et al. Computational study of film cooling and flowfields on a stepped vane endwall with a row of cylindrical hole and interrupted slot injections. Int J Heat Mass Transf. 2019;134:796–806. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.093.

    Article  Google Scholar 

  33. Chen Z, Zhang Z, Li Y, et al. Vortex dynamics based analysis of internal crossflow effect on film cooling performance. Int J Heat Mass Transf. 2019;145:118757. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118757.

    Article  Google Scholar 

  34. Hosseini Baghdad Abadi SM, Zirak S, Rajabi Zargar Abadi M. Numerical investigation of the effect of pulsed injection on film cooling effectiveness of turbine blade under rotation. Heat Transf Res. 2021;52:63–78. https://doi.org/10.1615/HeatTransRes.2021036404.

    Article  Google Scholar 

  35. Jiang Y, Zheng Q, Yue G, et al. Conjugate heat transfer simulation of turbine blade high efficiency cooling method with mist injection. Proceed Inst Mech Eng, Part C: J Mech Eng Sci. 2014;228:2738–49. https://doi.org/10.1177/0954406214522436.

    Article  Google Scholar 

  36. Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994;32:1598–605. https://doi.org/10.2514/3.12149.

    Article  Google Scholar 

  37. Hylton LD, Mihelc MS, Turner ER, et al. (1983) Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes. NACA Report, CR-168015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadat Zirak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.M., Zirak, S. & Rajabi Zargarabadi, M. Pulsed film cooling on a complete turbine blade: steady, sinusoidal and square injections. J Therm Anal Calorim 148, 9761–9783 (2023). https://doi.org/10.1007/s10973-023-12322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12322-x

Keywords

Navigation