Skip to main content
Log in

A novel hybrid nanofluid including MWCNT and ZrO2 nanoparticles: implementation of response surface methodology and artificial neural network

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the thermal behavior of a hybrid nanofluid including nanoparticles of multi-walled carbon nanotube (\(\mathrm{MWCNT}\) ) and \({\mathrm{ZrO}}_{2}\) was discussed. The nanoparticles of \(\mathrm{MWCNT}\) and \({\mathrm{ZrO}}_{2}\) at the mass fraction 40:60 were added to pure water with CMC surfactant to prepare samples at 0.009, 0.018, 0.036, 0.072 and 0.14 vol%. The thermal conductivity of \(\mathrm{MWCNT}-{\mathrm{ZrO}}_{2}/\mathrm{water}\) \(\left( {{\text{k}}_{{{\text{ZrO}}_{2} - {\text{MWCNT}}/{\text{water}}}} } \right)\) was measured at temperature range of 20–50 °C and compared with \({\mathrm{k}}_{\mathrm{water}}\) to investigate the effectiveness of adding \(\mathrm{MWCNT}-{\mathrm{ZrO}}_{2}\) nanoparticles to the base fluid by evaluating the parameter of thermal conductivity ratio \(\left( {{\text{TCR = }}\frac{{{\text{k}}_{{{\text{ZrO}}_{2} - {\text{MWCNT}}/{\text{water}}}} }}{{{\text{k}}_{{{\text{water}}}} }}} \right)\). The results showed that an increase in temperature results in a higher \(\mathrm{TCR}\). The use of \(\mathrm{MWCNT}-{\mathrm{ZrO}}_{2}\) led to an increase in thermal conductivity up to 15.4%. To boost the amount of improvement, the sonication time increased from 30 to 60 min. The best sonication time was 50 min so that \(\mathrm{MWCNT}\) and \({\mathrm{ZrO}}_{2}\) nanoparticles could enhance \({\mathrm{k}}_{\mathrm{water}}\) by 59.6%. To estimate TCR, the response surface methodology was used, which based on linear regression, provides a function consisting of independent variables, and it was found for the best function with an error of less than 1.52% and by providing R2 = 0.998, can estimate TCR very well. Then artificial intelligence was used, and it was determined that the neural network consisting of eight neurons with a maximum error of less than 0.4% could predict TCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

CMC:

Carboxy methyl cellulose

DLS:

Dynamic light scattering

EG:

Ethylene glycol

k:

Thermal conductivity \(\left( {{\text{W}}{{{\text m}^{-1} {\text K}^{-1}}}} \right)\)

MF:

Mass fraction

MOD:

Margin of deviation

MSE:

Mean square error

MWCNT:

Multi-walled carbon nanotubes

RSM:

Response surface methodology

STP*:

Sonication time parameter \(\mathrm{STP}=\frac{\mathrm{STP}-30}{60-30}\)

T:

Temperature (℃)

T :

Dimensionless temperature \(\left({\mathrm{T}}^{*}=\frac{T-20}{50-20}\right)\)

TCR:

Thermal conductivity ratio \(\left(\frac{{\mathrm{k}}_{\mathrm{nf}}}{{\mathrm{k}}_{\mathrm{bf}}}\right)\)

XRD:

X-ray diffraction

ρ:

Density \(\left({\mathrm{kg}}{{\mathrm\,{\text{m}}}^{-3}}\right)\)

\(\Phi\) :

Volume fraction

\(\upmu\) :

Viscosity (Pa.s)

\(\sigma\) :

Surface tension \(\left( {{\text{N\,}}{\text{m}^{-1}}} \right)\)

\(\mathrm{bf}\) :

Base fluid

\(\mathrm{nf}\) :

Nanofluid

\(\mathrm{np}\) :

Nanoparticle

References

  1. Mahian O, Bellos E, Markides CN, Taylor RA, Alagumalai A, Yang L, Qin C, Lee BJ, Ahmadi G, Safaei MR, Wongwises S. Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake. Nano Energy. 2021;86:106069.

    Article  CAS  Google Scholar 

  2. Sangeetha A, Shanmugan S, Alrubaie AJ, Jaber MM, Panchal H, Attia MEH, Elsheikh AH, Mevada D, Essa FA. A review on PCM and nanofluid for various productivity enhancement methods for double slope solar still: future challenge and current water issues. Desalination. 2023;551:116367.

    Article  CAS  Google Scholar 

  3. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.

    Article  CAS  Google Scholar 

  4. Rubbi F, Das L, Habib K, Aslfattahi N, Saidur R, Rahman MT. State-of-the-art review on water-based nanofluids for low temperature solar thermal collector application. Sol Energy Mater Sol Cells. 2021;230:111220.

    Article  CAS  Google Scholar 

  5. Liu C, Qiao Y, Du P, Zhang J, Zhao J, Liu C, Huo Y, Qi C, Rao Z, Yan Y. Recent advances of nanofluids in micro/nano scale energy transportation. Renew Sustain Energy Rev. 2021;149:111346.

    Article  CAS  Google Scholar 

  6. Ren Y, Wang H, Zhang T, Ma L, Ye P, Zhong Y, Hu Y. Designed preparation of CoS/Co/MoC nanoparticles incorporated in N and S dual-doped porous carbon nanofibers for high-performance Zn-air batteries. Chin Chem Lett. 2021;32(7):2243–8.

    Article  CAS  Google Scholar 

  7. Mustafa J, Alqaed S, Sharifpur M. Economic and thermo-hydraulic features of multiphase nanofluids in a heat exchanger equipped with novel turbulators: a numerical study. Eng Anal Boundary Elem. 2022;144:55–66.

    Article  Google Scholar 

  8. Cardenas Contreras EM, Bandarra Filho EP. Heat transfer performance of an automotive radiator with MWCNT nanofluid cooling in a high operating temperature range. Appl Therm Eng. 2022;207:118149.

    Article  CAS  Google Scholar 

  9. Sepehrnia M, Mohammadzadeh K, Hemmati Rozbahani M, Ghiasi MJ, Amani M. Experimental study, prediction modeling, sensitivity analysis, and optimization of rheological behavior and dynamic viscosity of 5W30 engine oil based SiO2/MWCNT hybrid nanofluid. Ain Shams Eng J. 2023;2023:102257.

    Article  Google Scholar 

  10. Shoeibi S, Rahbar N, Abedini Esfahlani A, Kargarsharifabad H. Improving the thermoelectric solar still performance by using nanofluids– Experimental study, thermodynamic modeling and energy matrices analysis. Sustain Energy Technol Assess. 2021;47:101339.

    Google Scholar 

  11. Mustafa J, Abdullah MM, Ahmad MZ, Husain S, Sharifpur M. Numerical study of two-phase turbulence nanofluid flow in a circular heatsink for cooling LEDs by changing their location and dimensions. Eng Anal Boundary Elem. 2023;149:248–60.

    Article  Google Scholar 

  12. Mustafa J, Alqaed S, Sharifpur M, Alharthi MA. Combined simulation of molecular dynamics and computational fluid dynamics to predict the properties of a nanofluid flowing inside a micro-heatsink by modeling a radiator with holes on its fins. J Mol Liq. 2022;362:119727.

    Article  CAS  Google Scholar 

  13. Xu K, Zheng S, Li Y, Chu H, Xiong Q, Mei Z, Zhao Q, Yang L, Li S, Pan F. Constructing low-valent Ni nanoparticles for highly selective CO2 reduction. Chin Chem Lett. 2022;33(1):424–7.

    Article  CAS  Google Scholar 

  14. Tian J, Liu D, Li J, Sun D, Liu H, Wang H, Tang Y. Cu/Cu2O nanoparticles co-regulated carbon catalyst for alkaline Al-air batteries. Chin Chem Lett. 2021;32(8):2427–32.

    Article  CAS  Google Scholar 

  15. Wang Z, Chen C, Liu H, Hrynshpan D, Savitskaya T, Chen J, Chen J. Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Sci Total Environ. 2020;708:135063.

    Article  CAS  PubMed  Google Scholar 

  16. Yan S-R, Kalbasi R, Karimipour A, Afrand M. Improving the thermal conductivity of paraffin by incorporating MWCNTs nanoparticles. J Therm Anal Calorim. 2020;145:2809–16.

    Article  Google Scholar 

  17. Boroomandpour A, Toghraie D, Hashemian M. A comprehensive experimental investigation of thermal conductivity of a ternary hybrid nanofluid containing MWCNTs- titania-zinc oxide/water-ethylene glycol (80:20) as well as binary and mono nanofluids. Synth Met. 2020;268:116501.

    Article  CAS  Google Scholar 

  18. Çolak AB. A novel comparative analysis between the experimental and numeric methods on viscosity of zirconium oxide nanofluid: developing optimal artificial neural network and new mathematical model. Powder Technol. 2021;381:338–51.

    Article  Google Scholar 

  19. Ordóñez F, Chejne F, Pabón E, Cacua K. Synthesis of ZrO2 nanoparticles and effect of surfactant on dispersion and stability. Ceram Int. 2020;46(8):11970–7.

    Article  Google Scholar 

  20. Sun C, Fard BE, Karimipour A, Abdollahi A, Bach Q-V. Producing ZrO2/LP107160 NF and presenting a correlation for prediction of thermal conductivity via GMDH method: An empirical and numerical investigation. Physica E. 2021;127:114511.

    Article  CAS  Google Scholar 

  21. Sarafraz MM, Kiani T, Hormozi F. Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids. Int Commun Heat Mass Transfer. 2016;70:75–83.

    Article  CAS  Google Scholar 

  22. Askari S, Rashidi A, Koolivand H. Experimental investigation on the thermal performance of ultra-stable kerosene-based MWCNTs and Graphene nanofluids. Int Commun Heat Mass Transfer. 2019;108:104334.

    Article  CAS  Google Scholar 

  23. Wu Z, Wang L, Sundén B, Wadsö L. Aqueous carbon nanotube nanofluids and their thermal performance in a helical heat exchanger. Appl Therm Eng. 2016;96:364–71.

    Article  CAS  Google Scholar 

  24. Wang Z, Dai L, Yao J, Guo T, Hrynsphan D, Tatsiana S, Chen J. Enhanced adsorption and reduction performance of nitrate by Fe–Pd–Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere. 2021;281:130718.

    Article  CAS  PubMed  Google Scholar 

  25. Huang K, Xu Q, Ying Q, Gu B, Yuan W. Wireless strain sensing using carbon nanotube composite film. Compos B Eng. 2023;256:110650.

    Article  CAS  Google Scholar 

  26. Adun H, Kavaz D, Dagbasi M. Review of ternary hybrid nanofluid: synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects. J Clean Prod. 2021;328:129525.

    Article  CAS  Google Scholar 

  27. Liu D, Yang N, Zeng Q, Liu H, Chen D, Cui P, Xu L, Hu C, Yang J. Core-shell Ag–Pt nanoparticles: a versatile platform for the synthesis of heterogeneous nanostructures towards catalyzing electrochemical reactions. Chin Chem Lett. 2021;32(11):3288–97.

    Article  CAS  Google Scholar 

  28. Hemmat Esfe M, Esfandeh S, Abbasian Arani AA. Proposing a modified engine oil to reduce cold engine start damages and increase safety in high temperature operating conditions. Powder Technol. 2019;355:251–63.

    Article  CAS  Google Scholar 

  29. Hemmat Esfe M, Rostamian H, Rejvani M, Emami MRS. Rheological behavior characteristics of ZrO2-MWCNT/10w40 hybrid nano-lubricant affected by temperature, concentration, and shear rate: An experimental study and a neural network simulating. Phys E Low-dimens Syst Nanostruct. 2018;102:160–70.

    Article  CAS  Google Scholar 

  30. Tian X-X, Kalbasi R, Qi C, Karimipour A, Huang H-L. Efficacy of hybrid nano-powder presence on the thermal conductivity of the engine oil: an experimental study. Powder Technol. 2020;369:261–9.

    Article  CAS  Google Scholar 

  31. Hemmat Esfe M, Karimpour R, Abbasian Arani AA, Shahram J. Experimental investigation on non-Newtonian behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant affected by alterations of temperature, concentration and shear rate for engine applications. Int Commun Heat Mass Transfer. 2017;82:97–102.

    Article  CAS  Google Scholar 

  32. Aghahadi MH, Niknejadi M, Toghraie D. An experimental study on the rheological behavior of hybrid Tungsten oxide (WO3)-MWCNTs/engine oil Newtonian nanofluids. J Mol Struct. 2019;1197:497–507.

    Article  CAS  Google Scholar 

  33. Rostami S, Kalbasi R, Talebkeikhah M, Goldanlou AS. Improving the thermal conductivity of ethylene glycol by addition of hybrid nano-materials containing multi-walled carbon nanotubes and titanium dioxide: applicable for cooling and heating. J Therm Anal Calorim. 2020;143:1701–12.

    Article  Google Scholar 

  34. Hemmat Esfe M, Rostamian H, Reza Sarlak M, Rejvani M, Alirezaie A. Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: An experimental study and a neural network simulating. Phys E Low dimens Syst Nanostruct. 2017;94:231–40.

    Article  CAS  Google Scholar 

  35. Chu Y-M, Ibrahim M, Saeed T, Berrouk AS, Algehyne EA, Kalbasi R. Examining rheological behavior of MWCNT-TiO2/5W40 hybrid nanofluid conducting experimental study—challenging of RSM and ANN. J Mol Liq. 2021;333:115969.

    Article  CAS  Google Scholar 

  36. Zhu Y, Zamani M, Xu G, Toghraie D, Hashemian M, Alizadeh AA. A comprehensive experimental investigation of dynamic viscosity of MWCNT-WO3/water-ethylene glycol antifreeze hybrid nanofluid. J Mol Liq. 2021;333:115986.

    Article  CAS  Google Scholar 

  37. Mukherjee S, Mishra PC, Chaudhuri P. Thermo-economic performance analysis of Al2O3-water nanofluids—an experimental investigation. J Mol Liq. 2020;299:112200.

    Article  CAS  Google Scholar 

  38. Al-Rashed AAAA, Shahsavar A, Entezari S, Moghimi MA, Adio SA, Nguyen TK. Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: Thermal performance and thermodynamic considerations. Appl Therm Eng. 2019;155:247–58.

    Article  CAS  Google Scholar 

  39. Asjad MI, Aleem M, Ahmadian A, Salahshour S, Ferrara M. New trends of fractional modeling and heat and mass transfer investigation of (SWCNTs and MWCNTs)-CMC based nanofluids flow over inclined plate with generalized boundary conditions. Chin J Phys. 2020;66:497–516.

    Article  CAS  Google Scholar 

  40. Saqib M, Khan I, Shafie S. Application of Atangana-Baleanu fractional derivative to MHD channel flow of CMC-based-CNT’s nanofluid through a porous medium. Chaos Solitons Fract. 2018;116:79–85.

    Article  Google Scholar 

  41. Abdel-Ghani NT, El-Chaghaby GA, Helal FS. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J Adv Res. 2015;6(3):405–15.

    Article  CAS  PubMed  Google Scholar 

  42. Mangla O, Roy S. editors. Monoclinic zirconium oxide nanostructures having tunable band gap synthesized under extremely non-equilibrium plasma conditions. Multidisciplinary Digital Publishing Institute Proceedings; 2018.

  43. Müller RH, Hildebrand GE. Zetapotential und Partikelladung in der Laborpraxis(Einführung in die Theorie praktische Messdurchführung Dateninterpretation), Paperback APV. (1996).

  44. ASHRAE A (2021) ASHRAE handbook-fundamentals (SI), American Society of Heating, Refrigerating & Air Conditioning. (2021).

  45. Alnaqi AA, Alsarraf J, Al-Rashed AAAA. Using response surface methodology and artificial neural network to examine the rheological behavior of tungsten trioxide/ethylene glycol nanofluid under various sonication times. J Mol Liq. 2021;337:116022.

    Article  CAS  Google Scholar 

  46. Ghafurian MM, Akbari Z, Niazmand H, Mehrkhah R, Wongwises S, Mahian O. Effect of sonication time on the evaporation rate of seawater containing a nanocomposite. Ultrason Sonochem. 2020;61:104817.

    Article  CAS  PubMed  Google Scholar 

  47. Bahrami D, Nadooshan AA, Bayareh M. Numerical study on the effect of planar normal and Halbach magnet arrays on micromixing. Int J Chem React Eng. 2020. https://doi.org/10.1515/ijcre-2020-0080.

    Article  Google Scholar 

  48. Pare A, Ghosh SK. A unique thermal conductivity model (ANN) for nanofluid based on experimental study. Powder Technol. 2021;377:429–38.

    Article  CAS  Google Scholar 

  49. Kaladgi AR, Afzal A, Manokar AM, Thakur D, Agbulut U, Alshahrani S, Subbiah R. Integrated Taguchi-GRA-RSM optimization and ANN modelling of thermal performance of zinc oxide nanofluids in an automobile radiator. Case Studies Therm Eng. 2021;26:101068.

    Article  Google Scholar 

  50. Shi L, Zhang S, Arshad A, Hu Y, He Y, Yan Y. Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network. Renew Sustain Energy Rev. 2021;149:111341.

    Article  CAS  Google Scholar 

  51. Vicki Wanatasanappan V, Kumar Kanti P, Sharma P, Husna N, Abdullah MZ. Viscosity and rheological behavior of Al2O3-Fe2O3/water-EG based hybrid nanofluid: A new correlation based on mixture ratio. J Mol Liq. 2023;375:121365.

    Article  CAS  Google Scholar 

  52. Hajialigol N, Daghigh R. The evaluation of the first and second laws of thermodynamics for the pulsating MHD nanofluid flow using CFD and machine learning approach. J Taiwan Inst Chem Eng. 2023;2023:104782.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Deputy for Research and Innovation Ministry of Education, Kingdom of Saudi Arabia for this research through a grant (NU/IFC/2/SERC/-/23) under the Institutional Funding Committee at Najran University, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jawed Mustafa or Mohsen Sharifpur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, J., Alqaed, S., Abdullah, M.M. et al. A novel hybrid nanofluid including MWCNT and ZrO2 nanoparticles: implementation of response surface methodology and artificial neural network. J Therm Anal Calorim 148, 9619–9632 (2023). https://doi.org/10.1007/s10973-023-12317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12317-8

Keywords

Navigation