Skip to main content
Log in

Evaluation of the thermal degradation and cone calorimeter parameters of an intumescent composite containing acidic montmorillonites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work evaluates the effects of the acidity of montmorillonites on the thermal degradation process and in the cone calorimeter parameters of an intumescent composite constituted by polypropylene, ammonium polyphosphate (APP) and pentaerythritol (PER). The cone calorimeter tests showed that the absence of moderate-strength acidic sites is related to the increase in the peak of heat release rate. The composites were burnt at different key-temperatures and the residues were submitted to Fourier transform infrared spectroscopy, Solid State Nuclear Magnetic Resonance Spectroscopy and to X-ray diffraction. The results showed that the addition of the clay minerals is important to preserve the char at higher temperatures (over 430 °C) and that an excess of Brønsted sites over the Lewis ones with moderate-strength could lead to the increase of the esterification reactions between PER and APP. Besides, the addition of the clay minerals did not affect the mechanical properties of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Papaspyrides C, Pantelis K. Polymer Green Flame Retardants. In: Papaspyrides C, Pantelis K, editors. Polym Green Flame Retard. 1st ed. Amsterdam: Elsevier; 2014. p. 11–2.

    Google Scholar 

  2. Camino G, Costa L, Trossarelli L. Study of the mechanism of intumescence in fire retardant polymers: part I—Thermal degradation of ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab. 1984;6:243–52. https://doi.org/10.1016/0141-3910(84)90004-1.

    Article  CAS  Google Scholar 

  3. Camino G, Costa L, Martinasso G. Intumescent fire-retardant systems. Polym Degrad Stab. 1989;23:359–76.

    Article  CAS  Google Scholar 

  4. Camino G, Costa L, Trossarelli L, Costanzi F, Pagliari A. Study of the mechanism of intumescence in fire retardant polymers: part VI—Mechanism of ester formation in polyphosphate-pentaerythritol mixtures. Polym Degrad Stab. 1985;12:213–28. https://doi.org/10.1016/0141-3910(85)90090-4.

    Article  CAS  Google Scholar 

  5. Camino G, Costa L, Trossarelli L. Study of the mechanism of intumescence in fire retardant polymers: part III—Effect of urea on the ammonium polyphosphate-pentaerythritol system. Polym Degrad Stab. 1984;7:221–9. https://doi.org/10.1016/0141-3910(84)90098-3.

    Article  CAS  Google Scholar 

  6. Delobel R, Le Bras M, Ouassou N, Descressain R. Fire retardance of polypropylene by diammonium pyrophosphate-pentaerythritol: spectroscopic characterization of the protective coatings. Polym Degrad Stab. 1990;30:41–56. https://doi.org/10.1016/0141-3910(90)90116-O.

    Article  CAS  Google Scholar 

  7. Bourbigot S, Le Bras M, Delobel R, Bréant P, Trémillon JM. Carbonization mechanisms resulting from intumescence-part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon N Y. 1995;33:283–94. https://doi.org/10.1016/0008-6223(94)00131-I.

    Article  CAS  Google Scholar 

  8. Bourbigot S, Le Bras M, Delobel R, Decressain R, Amoureux J-P. Synergistic effect of zeolite in an intumescence process: study of the carbonaceous structures using solid-state NMR. J Chem Soc Faraday Trans. 1996;92:149. https://doi.org/10.1039/ft9969200149.

    Article  CAS  Google Scholar 

  9. Bourbigot S, Le Bras M, Delobel R. Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon N Y. 1993;31:1219–30. https://doi.org/10.1016/0008-6223(93)90079-P.

    Article  CAS  Google Scholar 

  10. Bourbigot S, Duquesne S. Fire retardant polymers: recent developments and opportunities. J Mater Chem. 2007;17:2283–300. https://doi.org/10.1039/b702511d.

    Article  CAS  Google Scholar 

  11. Ribeiro SPS, Estevão LRM, Pereira C, Rodrigues J, Nascimento RSV. Influence of clays on the flame retardancy and high temperature viscoelastic properties of polymeric intumescent formulations. Polym Degrad Stab. 2009;94:421–31. https://doi.org/10.1016/j.polymdegradstab.2008.11.015.

    Article  CAS  Google Scholar 

  12. Estevão LRM, Le Bras M, Delobel R, Nascimento RSV. Spent refinery catalyst as a synergistic agent in intumescent formulations: influence of the catalyst’s particle size and constituents. Polym Degrad Stab. 2005;88:444–55. https://doi.org/10.1016/j.polymdegradstab.2004.11.016.

    Article  CAS  Google Scholar 

  13. Bourbigot S, Le BM, Bréant P, Trémillon J-M, Delobel R. Zeolites: new synergistic agents for intumescent fire retardant thermoplastic formulations-criteria for the choice of the zeolite. Fire Mater. 1996;20:145–54. https://doi.org/10.1002/(SICI)1099-1018(199605)20:3%3c145::AID-FAM569%3e3.0.CO;2-L.

    Article  CAS  Google Scholar 

  14. Lecouvet B, Sclavons M, Bailly C, Bourbigot S. A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polym Degrad Stab. 2013;98:2268–81. https://doi.org/10.1016/j.polymdegradstab.2013.08.024.

    Article  CAS  Google Scholar 

  15. Chigwada G, Wilkie CA. Synergy between conventional phosphorus fire retardants and organically-modified clays can lead to fire retardancy of styrenics. Polym Degrad Stab. 2003;81:551–7. https://doi.org/10.1016/S0141-3910(03)00156-3.

    Article  CAS  Google Scholar 

  16. Tang Y, Hu Y, Xiao J, Wang J, Song L, Fan W. PA-6 and EVA alloy/clay nanocomposites as char forming agents in poly(propylene) intumescent formulations. Polym Adv Technol. 2005;16:338–43. https://doi.org/10.1002/pat.586.

    Article  CAS  Google Scholar 

  17. Ribeiro SPS, Estevão LRM, Nascimento RSV. Brazilian clays as synergistic agents in an ethylenic polymer matrix containing an intumescent formulation. J Therm Anal Calorim. 2007;87:661–5. https://doi.org/10.1007/s10973-006-7872-z.

    Article  CAS  Google Scholar 

  18. Huang G, Chen S, Song P, Lu P, Wu C, Liang H. Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly(methyl methacrylate) nanocomposites. Appl Clay Sci. 2014;88–89:78–85. https://doi.org/10.1016/j.clay.2013.11.002.

    Article  CAS  Google Scholar 

  19. Martins RC, Rezende MJC, Nascimento MAC, Nascimento RSV, Ribeiro SPDS. Synergistic action of montmorillonite with an intumescent formulation: the impact of the nature and the strength of acidic sites on the flame-retardant properties of polypropylene composites. Polym (Basel). 2020;12:2781. https://doi.org/10.3390/polym12122781.

    Article  CAS  Google Scholar 

  20. Ribeiro SPS, Martins RC, Cescon LS, Estevão LRDM, Nascimento MAC, Nascimento RSV. NMR evaluation of montmorillonite’s d -spacings on the formation of phosphocarbonaceous species in intumescent systems. J Appl Polym Sci. 2019;136:48053. https://doi.org/10.1002/app.48053.

    Article  CAS  Google Scholar 

  21. Alves LP, San Gil RAS, Faro Júnior AC, Borré LB, Lima SH, Pimentel HRX, et al. Development and validation of an analytical methodology for quantification of Al in alumina-based materials by 27Al Solid-state nmr. Int J Dev Res. 2021. https://doi.org/10.37118/ijdr.21294.03.2021.

    Article  Google Scholar 

  22. Ribeiro SPS, Martins RC, Barbosa GM, Rocha MAF, Landesmann A, Nascimento MAC, et al. Influence of the zeolite acidity on its synergistic action with a flame-retarding polymeric intumescent formulation. J Mater Sci. 2020;55:619–30. https://doi.org/10.1007/s10853-019-04047-w.

    Article  CAS  Google Scholar 

  23. Wei P, Hao J, Du J, Han Z, Wang J. An investigation on synergism of an intumescent flame retardant based on silica and alumina. J Fire Sci. 2003;21:17–28. https://doi.org/10.1177/0734904103021001002.

    Article  CAS  Google Scholar 

  24. Zhao W, Kumar Kundu C, Li Z, Li X, Zhang Z. Flame retardant treatments for polypropylene: strategies and recent advances. Compos Part A Appl Sci Manuf. 2021;145:106382. https://doi.org/10.1016/j.compositesa.2021.106382.

    Article  CAS  Google Scholar 

  25. Ribeiro SPS, Estevão LRM, Pereira CMC, Nascimento RSV. Mechanism of action of different d-spacings clays on the intumescent fire retardance of polymers. J Appl Polym Sci. 2013;130:1759–71. https://doi.org/10.1002/app.39349.

    Article  CAS  Google Scholar 

  26. Lai X, Tang S, Li H, Zeng X. Flame-retardant mechanism of a novel polymeric intumescent flame retardant containing caged bicyclic phosphate for polypropylene. Polym Degrad Stab. 2015;113:22–31. https://doi.org/10.1016/j.polymdegradstab.2015.01.009.

    Article  CAS  Google Scholar 

  27. Herrera M, Matuschek G, Kettrup A. Thermal degradation studies of some aliphatic polyamides using hyphenated techniques (TG-MS, TG-FTIR). J Therm Anal Calorim. 2000;59:385–94. https://doi.org/10.1023/A:1010177105297.

    Article  CAS  Google Scholar 

  28. Xi W, Qian L, Qiu Y, Chen Y. Flame-retardant behavior of bi-group molecule derived from phosphaphenanthrene and triazine groups on polylactic acid. Polym Adv Technol. 2016;27:781–8. https://doi.org/10.1002/pat.3714.

    Article  CAS  Google Scholar 

  29. Wu K, Song L, Wang Z, Hu Y. Microencapsulation of ammonium polyphosphate with PVA-melamine-formaldehyde resin and its flame retardance in polypropylene. Polym Adv Technol. 2008;19:1914–21. https://doi.org/10.1002/pat.1231.

    Article  CAS  Google Scholar 

  30. Tidjani A. Polypropylene-graft-Maleic anhydride—Nanocomposites: II—Fire behaviour of nanocomposites produced under nitrogen and in air. Polym Degrad Stab. 2005;87:43–9. https://doi.org/10.1016/j.polymdegradstab.2004.07.007.

    Article  CAS  Google Scholar 

  31. Kim NK, Lin RJT, Bhattacharyya D. Effects of wool fibres, ammonium polyphosphate and polymer viscosity on the flammability and mechanical performance of PP/wool composites. Polym Degrad Stab. 2015;119:167–77. https://doi.org/10.1016/j.polymdegradstab.2015.05.015.

    Article  CAS  Google Scholar 

  32. McKee DW, Spiro CL, Lamby EJ. The inhibition of graphite oxidation by phosphorus additives. Carbon N Y. 1984;22:285–90. https://doi.org/10.1016/0008-6223(84)90172-6.

    Article  CAS  Google Scholar 

  33. Chen C, Gu X, Jin X, Sun J, Zhang S. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites. Carbohydr Polym. 2017;157:1586–93. https://doi.org/10.1016/j.carbpol.2016.11.035.

    Article  CAS  PubMed  Google Scholar 

  34. Tang G, Zhang R, Wang X, Wang B, Song L, Hu Y, et al. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite. J Macromol Sci Part A Pure Appl Chem. 2013;50:255–69. https://doi.org/10.1080/10601325.2013.742835.

    Article  CAS  Google Scholar 

  35. Yang W, Tawiah B, Yu C, Qian YF, Wang LL, Yuen ACY, et al. Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes. Compos Part A Appl Sci Manuf. 2018;110:227–36. https://doi.org/10.1016/j.compositesa.2018.04.027.

    Article  CAS  Google Scholar 

  36. Dill LP, Kochepka DM, Lima LL, Leitão AA, Wypych F, Cordeiro CS. Brazilian mineral clays: classification, acid activation and application as catalysts for methyl esterification reactions. J Braz Chem Soc. 2021;32:145–57. https://doi.org/10.21577/0103-5053.20200164.

    Article  CAS  Google Scholar 

  37. Steudel A, Batenburg LF, Fischer HR, Weidler PG, Emmerich K. Alteration of swelling clay minerals by acid activation. Appl Clay Sci. 2009;44:105–15. https://doi.org/10.1016/j.clay.2009.02.002.

    Article  CAS  Google Scholar 

  38. Bourbigot S, Le Bras M, Delobel R, Trémillon J-M. Synergistic effect of zeolite in an intumescence process. Study of the interactions between the polymer and the additives. J Chem Soc Faraday Trans. 1996;92:3435–44. https://doi.org/10.1039/FT9969203435.

    Article  CAS  Google Scholar 

  39. Bourbigot S, Duquesne S. Intumescence and Nanocomposites: a Novel Route for Flame-Retarding Polymeric Materials. In: Morgan AR, Wilkie CA, (eds.) Flame Retard. Polym. Nanocomposites, Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2007, pp. 131–62. https://doi.org/10.1002/9780470109038.ch6.

  40. Fontaine G, Gallos A, Bourbigot S. Role of montmorillonite for enhancing fire retardancy of intumescent PLA. Fire Saf Sci. 2014;11:808–20. https://doi.org/10.3801/IAFSS.FSS.11-808.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support of the SCT—COAM (CETEM/UFRJ), LIP (IQ/UFRJ) and the Solid State NMR Laboratory (IQ/UFRJ) in providing XRD, solid-state FTIR analyses and solid-state NMR analysis, respectively.

Funding

This work was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) [001]. The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) [307924/2019-0], FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro) [E-26/202.939/2017, E-26/201.861/2019 and E-26/010.002270/2019], and INOMAT (Instituto Nacional de Ciência e Tecnologia em Materiais Complexos Funcionais) [CNPq 465452/2014-0] for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Resources: J-ML-C; RSVN; MJCR. Supervision: J-ML-C; MACN; SPdSR. Writing (review and editing): J-ML-C; MJCR; MACN; RSVN; SPdSR. Writing (original draft): RCM. Methodology: MJCR; SPdSR. Funding acquisition: MACN; SPdSR. Conceptualization: SPdSR. Formal analysis: RCM. Investigation: RCM.

Corresponding author

Correspondence to Raíssa Carvalho Martins.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2517 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho Martins, R., Pereira da Silva Ribeiro, S., Jakeline Cunha Rezende, M. et al. Evaluation of the thermal degradation and cone calorimeter parameters of an intumescent composite containing acidic montmorillonites. J Therm Anal Calorim 148, 7669–7686 (2023). https://doi.org/10.1007/s10973-023-12274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12274-2

Keywords

Navigation