Skip to main content
Log in

On the non-isothermal crystallization kinetics, glass forming ability and thermal stability of Bi additive Se–Te–Ge alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present paper, the study of amorphous-crystalline transformation in (Se80Te20)94−x Ge6Bix (x = 0, 1, 2, 4, 6, 8, 10 and 12 at.%) chalcogenide alloys has been done using non-isothermal differential scanning calorimetry (DSC). Characteristic temperatures indicate that the samples with x = 1 at.% and x = 6 at.% can be considered as a critical configurations at which the system becomes a chemically ordered alloy. Kissinger and Moynihan approaches which utilized dependence of glass transition temperature (Tg) on heating rate (α) are used to deduce activation energy of glass transition (Eg). Crystallization process is characterized by various kinetic parameters such as activation energy and frequency factor deduced using different methods. Dietzel, Hruby, Saad and Poulin criteria are employed to assess glass forming ability and thermal stability of investigated alloys. The alloy with x = 12 at.% of Bi content has highest ∆T confirms maximum thermal stability, further validated from the values of Hruby parameter (Kgl) and thermal stability parameter (S). The fragility index infers that the composition studied in the present study is made from strong glass forming liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kotkata MF, El-Mously MK. A survey of amorphous Se–Te semiconductors and their characteristic aspects of crystallization. Acta Phys Hung. 1983;54:303–12. https://doi.org/10.1007/BF03053762.

    Article  CAS  Google Scholar 

  2. Kotkata MF, Mahmoud EA, El-Mously MK. Equilibrium diagram of Selenium−Tellurium system. Acta Phys Acad Sci Hung. 1982;50:61–6. https://doi.org/10.1007/BF03157957.

    Article  Google Scholar 

  3. Kotkata MF, Mahmoud EA, El-Mously MK. Kinetics of crystal growth in amorphous solid and supercooled liquid TeSe20 using DTA and d.c. Conductivity measurements. Acta Phys Acad Sci Hung. 1979;47:345–52. https://doi.org/10.1007/BF03158233.

    Article  CAS  Google Scholar 

  4. Kotkata MF, Shamah AM, El-Den MB, El-Mously MK. An X-ray study of As−Se−Te compounds. Acta Phys Hung. 1983;54:49–63. https://doi.org/10.1007/BF03158692.

    Article  CAS  Google Scholar 

  5. Ovshinsky SR. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett. 1968;21:1450. https://doi.org/10.1103/PhysRevLett.21.1450.

    Article  Google Scholar 

  6. Simon A-AA, Jones L, Sakaguchi Y, Kunold H, van Rooyen I, Mitkova M. Effect of ion irradiation on amorphous and crystalline Ge–Se and their application as phase change temperature sensor. Phys Status Solidi. 2021;258:2000429. https://doi.org/10.1002/PSSB.202000429.

    Article  Google Scholar 

  7. Li X, Yuan Z, Lv S, Song S, Song Z. Extended endurance performance and reduced threshold voltage by doping Si in GeSe-based ovonic threshold switching selectors. Thin Solid Films. 2021;734:138837. https://doi.org/10.1016/J.TSF.2021.138837.

    Article  CAS  Google Scholar 

  8. Tripathi SK, Patial Singh B, Thakur N. Glass transition and crystallization study of chalcogenide Se70Te15In15 glass. J Therm Anal Calorim. 2012;107:31–8. https://doi.org/10.1007/s10973-011-1724-1.

    Article  CAS  Google Scholar 

  9. Singh G, Goyal N, Saini GSS, Chandel PS, Tripathi SK. Effect of Bi on the electrical properties of a-Ge20Se80 glasses. J Optoelectron Adv Mater. 2005;7:2069–76. https://doi.org/10.1007/s10853-009-3441-8.

    Article  CAS  Google Scholar 

  10. Tohge N, Minami T, Tanaka M. Photoconductivity of vitreous chalcogenides chemically modified by bismuth. J Non Cryst Solids. 1983;59–60:999–1002. https://doi.org/10.1016/0022-3093(83)90335-6.

    Article  Google Scholar 

  11. Tohge N, Minami T, Yamamoto Y, Tanaka M. Electrical and optical properties of n-type semiconducting chalcogenide glasses in the system Ge–Bi–Se. J Appl Phys. 1980;51:1048–52.

    Article  CAS  Google Scholar 

  12. Tohge N, Minami T, Tanaka M. Electrical transport in n-type semiconducting Ge120BixSe70−xTe10 glasses. J Non Cryst Solids. 1980;37:23–30. https://doi.org/10.1016/0022-3093(80)90475-5.

    Article  CAS  Google Scholar 

  13. Mehta N, Agrahari SK, Kumar A. Chemical bond approach to activation energy of crystallization in some Se–Ge–M (M=Bi, In) chalcogenide glasses. Mater Lett. 2007;61:837–41. https://doi.org/10.1016/J.MATLET.2006.05.069.

    Article  CAS  Google Scholar 

  14. Kumar H, Mehta N. Kinematical studies of thermal crystallization in glassy Se78–xTe20Sn2Bix(0≤ x ≤6) Alloys. J Adv Phys. 2013;2:163–9. https://doi.org/10.1166/JAP.2013.1071.

    Article  CAS  Google Scholar 

  15. Tiwari RS, Mehta N, Kumar A. Effect of Bi incorporation on the crystallization kinetics of a (Se80Ge20)100xBix System. Chinese J Phys. 2006;12:467–77. https://doi.org/10.5297/SER.1201.002.

    Article  Google Scholar 

  16. Kumar H, Sharma A, Mehta N. Effect of Bismuth incorporation on some thermo-mechanical properties of glassy Se78Te20Sn2 alloy. J Optoelectron Adv Mater. 2012;14:899.

    CAS  Google Scholar 

  17. Wu T, Zhou X, Zhang H, Zhong X. Bi2S3 nanostructures: a new photocatalyst. Nano Res. 2010;3:379–86. https://doi.org/10.1007/s12274-010-1042-0.

    Article  CAS  Google Scholar 

  18. Yong X, Schoonen MAA. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral. 2000;85:543–56. https://doi.org/10.2138/am-2000-0416.

    Article  Google Scholar 

  19. Shahbazi MA, Faghfouri L, Nica M, Ferreira PA, Cia Figueiredo P, Maleki H, et al. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev. 2020;49:1253. https://doi.org/10.1039/c9cs00283a.

    Article  CAS  PubMed  Google Scholar 

  20. Du X, Cai F, Wang X. Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering. J Alloys Compd. 2014;587:6–9. https://doi.org/10.1016/j.jallcom.2013.10.185.

    Article  CAS  Google Scholar 

  21. Bao H, Li CM, Cui X, Song Q, Yang H, Guo J. Single-crystalline Bi2S3 nanowire network film and its optical switches. Nanotechnology. 2008;19:335302. https://doi.org/10.1088/0957-4484/19/33/335302.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng W, Xie T, Zhou Y, Chen YL, Jiang W, Zhao S, et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat Commun. 2015;6:6972. https://doi.org/10.1038/ncomms7972.

    Article  CAS  PubMed  Google Scholar 

  23. Yang C, Wang Z, Wu Y, Lv Y, Zhou B, Zhang W-H. Synthesis, characterization, and photodetector application of alkali metal bismuth chalcogenide nanocrystals. ACS Appl Energy Mater. 2019;2:182–6. https://doi.org/10.1021/acsaem.8b01640.

    Article  CAS  Google Scholar 

  24. Zhang X, Wang J, Zhang S-C. Topological insulators for high-performance terahertz to infrared applications. Phys Rev B. 2010;82:245107. https://doi.org/10.1103/PhysRevB.82.245107.

    Article  CAS  Google Scholar 

  25. Kunakova G, Surendran AP, Montemurro D. Topological insulator nanoribbon Josephson junctions: evidence for size effects in transport properties. J Appl Phys. 2020;128:194304. https://doi.org/10.1063/5.0022126.

    Article  CAS  Google Scholar 

  26. Ni J, Bi X, Jiang Y, Li L, Lu J. Bismuth chalcogenide compounds Bi2×3 (X=O, S, Se): Applications in electrochemical energy storage. Nano Energy. 2017;34:356–66. https://doi.org/10.1016/j.nanoen.2017.02.041.

    Article  CAS  Google Scholar 

  27. Julien C, Sararas I, Chevy A. Studies of lithium insertion in bismuth chalcogenide compounds. Solid State Ionics. 1989;36:113–20. https://doi.org/10.1016/0167-2738(89)90069-6.

    Article  CAS  Google Scholar 

  28. Bludská J, Jakubec I, Karamazov S, Horák J, Uher C. Lithium ions in the van der Waals gap of Bi2Se3 single crystals. J Solid State Chem. 2010;183:2813–7. https://doi.org/10.1016/J.JSSC.2010.09.026.

    Article  Google Scholar 

  29. Patial BS, Thakur N, Tripathi SK. On the variation of activation energy for amorphous–crystallization phase transition in Se–Te–Sn chalcogenide glasses using iso-conversional analysis. Phase Transit. 2017;90:1101–11. https://doi.org/10.1080/01411594.2017.1318442.

    Article  CAS  Google Scholar 

  30. Vashist P, Patial BS, Anjali, Tripathi SK, Thakur N. Iso-conversional study of crystallization activation energy of amorphous-crystallization transformation for Se79Te20Pb1 glass using non-isothermal differential scanning calorimetry technique. Indian J Pure Appl Phys. 2020;58:135–40.

    Google Scholar 

  31. Liu Y, Yuan S, Xie J, Shangguan F, Ren J, Chen G. A study on crystallization kinetics of thermoelectric Bi2 Se3 crystals in Ge–Se–Bi chalcogenide glasses by differential scanning calorimeter. J Am Ceram Soc. 2013;96:2141–6. https://doi.org/10.1111/jace.12421.

    Article  CAS  Google Scholar 

  32. Dahshan A, Alharbi SR, Aly KA, Saddeek Y. Thermal, mechanical, electrical and thermoelectric properties of Bi–As–Se glasses. J Therm Anal Calorim. 2019;140:125–31. https://doi.org/10.1007/S10973-019-08810-8.

    Article  Google Scholar 

  33. Tripathi RP, Alvi MA, Khan SA. Investigations of thermal, optical and electrical properties of Se85In15xBix glasses and thin films. J Therm Anal Calorim. 2020;146:2261–72. https://doi.org/10.1007/s10973-020-10332-7.

    Article  CAS  Google Scholar 

  34. Shoab M, Rahman RS, Aslam Z, Zulfequar M. Effect of bismuth incorporation on thermal properties of quaternary chalcogenide glass Se80Te15xCd5Bix (x=0, 5, 10) alloys. Ceram Int. 2020;46:24850–9. https://doi.org/10.1016/j.ceramint.2020.06.269.

    Article  CAS  Google Scholar 

  35. Anjali, Patial BS, Bhardwaj S, Awasthi AM, Thakur N. On the AC-conductivity mechanism in nano-crystalline Se79−xTe15In6Pbx (x=0, 1, 2, 4, 6, 8 and 10) alloys. Phys B. 2017;523:52–61. https://doi.org/10.1016/j.physb.2017.08.001.

    Article  CAS  Google Scholar 

  36. Vashist P, Patial BS, Thakur N. Synthesis and investigation of topological behaviour and structural modification in Se–Te–Ge–Bi nanostructured alloys. Appl Surf Sci Adv. 2022;8:100220. https://doi.org/10.1016/J.APSADV.2022.100220.

    Article  Google Scholar 

  37. Khan SA, Khan ZH, Zulfequar M, Husain M. Kinetics study of a-Se80Te20−xPbx using non-isothermal crystallization. Phys B Condens Matter. 2007;400:180–4. https://doi.org/10.1016/j.physb.2007.07.013.

    Article  CAS  Google Scholar 

  38. Pattanaik AK, Srinivasan A. Differential scanning calorimeter studies on Pb modified Ge–Se–Te glasses. J Mater Sci. 2003;38:2511–6. https://doi.org/10.1023/A:1023925706637.

    Article  CAS  Google Scholar 

  39. Saxena NS. Phase transformation kinetics and related thermodynamic and optical properties in chalcogenide glasses. J Non Cryst Solids. 2004;345:161–8. https://doi.org/10.1016/j.jnoncrysol.2004.08.016.

    Article  CAS  Google Scholar 

  40. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7. https://doi.org/10.1016/0025-5416(76)90189-0.

    Article  CAS  Google Scholar 

  41. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217. https://doi.org/10.6028/jres.057.026.

    Article  CAS  Google Scholar 

  42. Kissinger E, Reaction H. Kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6. https://doi.org/10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  43. Moharram AH, El-Oyoun MA. Pre-crystallization kinetics of the Bi10Se90 glass. J Phys D Appl Phys. 2000;33:700–3. https://doi.org/10.1088/0022-3727/33/6/318.

    Article  CAS  Google Scholar 

  44. Moynihan TC, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78:2673–7. https://doi.org/10.1021/j100619a008.

    Article  CAS  Google Scholar 

  45. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non Cryst Solids. 1986;88:11–34. https://doi.org/10.1016/S0022-3093(86)80084-9.

    Article  CAS  Google Scholar 

  46. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92. https://doi.org/10.1007/BF01912301.

    Article  CAS  Google Scholar 

  47. Kotkata MF, Mahmoud EA. Non-isothermal crystallization kinetic studies on amorphous chalcogenide semiconductors. Mater Sci Eng. 1982;54:163–8. https://doi.org/10.1016/0025-5416(82)90110-0.

    Article  CAS  Google Scholar 

  48. Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56. https://doi.org/10.1021/cr60135a002.

    Article  CAS  Google Scholar 

  49. Patial BS, Thakur N, Tripathi SK. On the crystallization kinetics of in additive Se–Te chalcogenide glasses. Thermochim Acta. 2011;513:1–8. https://doi.org/10.1016/j.tca.2010.09.009.

    Article  CAS  Google Scholar 

  50. Hrubý A. Evaluation of glass-forming tendency by means of DTA. Czechoslov J Phys. 1972;22:1187–93. https://doi.org/10.1007/BF01690134.

    Article  Google Scholar 

  51. Saad M, Poulain M. Glass froming ability criterion. Mater Sci Forum. 1987;20:11–8. https://doi.org/10.4028/www.scientific.net/MSF.19-20.11.

    Article  Google Scholar 

  52. Saffarini G, Saiter A, Garda MR, Saiter JM. Mean-coordination number dependence of the fragility in Ge–Se–In glass-forming liquids. Phys B Condens Matter. 2007;389:275–80. https://doi.org/10.1016/j.physb.2006.06.163.

    Article  CAS  Google Scholar 

  53. Štrbac GR, Petrović JS, Štrbac DD, Čajko K, et al. Glass transition kinetics and fragility index of chalcogenides from Ag–As–S–Se system. J Therm Anal Calorim. 2018;134:297–306. https://doi.org/10.1007/s10973-018-7151-9.

    Article  CAS  Google Scholar 

  54. Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non Cryst Solids. 1983;54:253–75. https://doi.org/10.1016/0022-3093(83)90069-8.

    Article  CAS  Google Scholar 

  55. Vilgis TA. Strong and fragile glasses: a powerful classification and its consequences. Phys Rev B. 1993;47:2882–5. https://doi.org/10.1103/PhysRevB.47.2882.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balbir Singh Patial.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashist, P., Patial, B.S., Bhardwaj, S. et al. On the non-isothermal crystallization kinetics, glass forming ability and thermal stability of Bi additive Se–Te–Ge alloys. J Therm Anal Calorim 148, 7717–7726 (2023). https://doi.org/10.1007/s10973-023-12271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12271-5

Keywords

Navigation