Skip to main content
Log in

Thermal stability of the luminescence emission of irradiated paracetamol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper reports the thermal effect on the luminescence emission of commercially available paracetamol (4-(acetylamino)phenol) tablets when exposed to ionizing radiation in the 1–20 Gy range. The sample was previously analyzed using techniques such as environmental scanning microscopy, Raman spectroscopy, thermal X-ray diffraction (TXRD), differential thermal analysis, thermogravimetry analysis and cathodoluminescence. The results show a significant stability of thermoluminescence (TL) emission. Reusability TL test involving successive cycles of irradiation (10 Gy) and readout (up to 130 °C) and dose–response and Tmax − Tstop studies indicate a null damage on the monoclinic structure of paracetamol due to the beta radiation exposure and/or thermal treatments. The behavior observed from the Tmax − Tstop test indicates very close energy levels denoting a continuum in the trap system that is supported by the activation energy values (1.06–1.33 eV) estimated by the initial rise method. There is no variation in the lattice structure of paracetamol samples when thermally treated up to 170 °C according to the structural parameters ao, bo, co, β angle and the cell volume calculated by the Rietveld refinement technique from the TXRD profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Correcher V, Garcia-Guinea J, Rivera T. Thermoluminescence sensitivity of daily-use materials. Radiat Eff Defects Solids. 2009. https://doi.org/10.1080/10420150902734064.

    Article  Google Scholar 

  2. Bailiff IK, Stepanenko VF, Goksu HY, Bøtter-Jensen L, Correcher V, Delgado A, Jungner H, Khamidova LG, Kolizshenkov TV, Meckbach R, Petin DV, Orlov MYu, Petrov SA. Retrospective luminescence dosimetry: development of approaches to application in populated areas downwind of the Chernobyl NPP. Health Phys. 2005. https://doi.org/10.1097/01.HP.0000164654.66585.20.

    Article  PubMed  Google Scholar 

  3. Kazakis NA, Tsirliganis NC, Kitis G. Preliminary thermoluminescence and optically stimulated luminescence investigation of commercial pharmaceutical preparations towards the drug sterilization dosimetry. Appl Radiat Isot. 2014. https://doi.org/10.1016/j.apradiso.2014.05.012.

    Article  PubMed  Google Scholar 

  4. Karampiperi M, Tsirliganis NC, Kazakis NA. Use of commercial pharmaceutical drug (Daktarin®) for retrospective/accidental/forensic thermoluminescence dosimetry. Appl Radiat Isot. 2020. https://doi.org/10.1016/j.apradiso.2020.109364.

    Article  PubMed  Google Scholar 

  5. Menon SN, Singh AK, Kadam SY, Koul DK, Datta D. OSL studies of commonly available medicines for their use as retrospective dosimeters. Radiat Meas. 2017. https://doi.org/10.1016/j.radmeas.2017.04.018.

    Article  Google Scholar 

  6. Stocker P, Gibella M, Crucq AS, Tilquin B, Lesgards G, Raffi J. Thermoluminescence de quelques médicaments ionises. J Chim Phys. 1999. https://doi.org/10.1051/jcp:1999127.

    Article  Google Scholar 

  7. Zimmermann B, Baranović G. Thermal analysis of paracetamol polymorphs by FT-IR spectroscopies. J Pharm Biomed Anal. 2011. https://doi.org/10.1016/j.jpba.2010.08.023.

    Article  PubMed  Google Scholar 

  8. Bøtter-Jensen L, Duller GAT. A new system for measuring optically stimulated luminescence from quartz samples. Nucl Tracks Radiat Meas. 1992;20:549–53.

    Article  Google Scholar 

  9. Daescu M, Matea A, Negrila C, Serbschi C, Ion AC, Baibarac M. Photoluminescence as a valuable tool in the optical characterization of acetaminophen and the monitoring of its photodegradation reactions. Molecules. 2020. https://doi.org/10.3390/molecules25194571.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Correcher V, Garcia-Guinea J, Martin-Fernandez C, Can N. Thermal effect on the cathode and thermoluminescence emission of natural topaz (Al2SiO4(F, OH)2). Spectrosc Lett. 2011. https://doi.org/10.1080/00387010.2011.610405.

    Article  Google Scholar 

  11. Polat M, Korkmaz M. Effect of radiation on solid paracetamol: ESR identification and dosimetric features of γ-irradiated paracetamol. Radiat Eff Defects Solids. 2006. https://doi.org/10.1080/10420150500467471.

    Article  Google Scholar 

  12. Madureira J, Melo R, Margaça FMA, Cabo Verde S. Ionizing radiation for treatment of pharmaceutical compounds: a review. J Water Process Eng. 2022. https://doi.org/10.1016/j.jwpe.2022.103179.

    Article  Google Scholar 

  13. Garcia-Guinea J, Garrido F, Lopez-Arce P, Correcher V, de la Figuera J. Spectral green cathodoluminescence emission from surfaces of insulators with metal-hydroxyl bonds. J Lumin. 2017. https://doi.org/10.1016/j.jlumin.2017.05.039.

    Article  Google Scholar 

  14. Ahmed M. A highly selective and sensitive spectrofluorimetric method for the determination of N-acetyl-4-aminophenol at nano-trace levels in pharmaceuticals and biological fluids using cerium (IV). Pak J Anal Environ Chem. 2019. https://doi.org/10.21743/pjaec/2019.06.03.

    Article  Google Scholar 

  15. Correcher V, Gomez-Ros JM, Garcia-Guinea J. Radiation effect on the 400-nm-thermoluminescence emission of a potassium-rich feldspar. Radiat Meas. 2004. https://doi.org/10.1016/j.radmeas.2003.12.006.

    Article  Google Scholar 

  16. Souadi G, Oglakci M, Kaynar UH, Correcher V, Benavente JF, Bulcar K, Ayvacikli M, Hiziroglu A, Topaksu M, Can N, Karali EE. Thermoluminescence glow curve analysis and kinetic parameters of Eu doped Li2MoO4 ceramic phosphors. Ceram Int. 2022. https://doi.org/10.1016/j.ceramint.2022.03.218.

    Article  Google Scholar 

  17. Benavente JF, Gomez-Ros JM, Correcher V. Characterization of the thermoluminescence glow curve of Li2B4O7:Cu,Ag. Radiat Meas. 2020. https://doi.org/10.1016/j.radmeas.2020.106427.

    Article  Google Scholar 

  18. Chen R, McKeever SWS. Theory of thermoluminescence and related phenomena. Singapore: World Scientific Publishing; 1997.

    Book  Google Scholar 

  19. Topaksu M, Correcher V, Garcia-Guinea J. Luminescence emission of natural fluorite and synthetic CaF2: Mn (TLD-400). Radiat Phys Chem. 2016. https://doi.org/10.1016/j.radphyschem.2015.10.002.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of Cukurova University, Turkey (project number: FBA-2020-11837).

Author information

Authors and Affiliations

Authors

Contributions

VC, MT, MF and JGG contributed to investigation, formal analysis, and visualization. VC, MT, contributed to writing—original draft. MT contributed to resources and funding acquisition.

Corresponding author

Correspondence to V. Correcher.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correcher, V., Topaksu, M., Furio, M. et al. Thermal stability of the luminescence emission of irradiated paracetamol. J Therm Anal Calorim 148, 7653–7660 (2023). https://doi.org/10.1007/s10973-023-12239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12239-5

Keywords

Navigation