Abstract
With the advancement of mine intelligence, mining cables find increasingly wider applications in mines. Accordingly, fire accidents caused by them deserve more attention. To accurately grasp the hazard of mining cable fires, this paper studied the pyrolysis characteristics, smoke production law, and smoke toxicity of mining flame-retardant cables by using a thermogravimetry infrared, a CCT-type cone calorimeter, a NBS smoke density test chamber, and a Fourier transform infrared smoke analyzer. The research shows that the pyrolysis processes of the mining cable at different heating rates are similar and experience three stages. During the three stages, the mining cable has activation energies of 22.14 kJ mol−1, 134.11 kJ mol−1, and 65.19 kJ mol−1, respectively, and hence its temperature during pyrolysis mainly ranges from 350 to 470 K. Besides, the primary gas products are CO2, H2O, CH4, HCl, and CO. With the increase of thermal radiation intensity, the mining cable shows a reduction in both the total smoke production and the peak smoke production rate and reaches the peak smoke production rate faster. Moreover, HCl and CO are the major causes of deaths and injuries in cable fires, followed by SO2, HCN, NOx, and CO2. The research results are of guiding significance for personnel evacuation and early monitoring and warning of mining cable fires.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wang K, Jiang SG, Ma XP, Wu ZY, Shao H, Zhang WQ, Cui CB. Information fusion of plume control and personnel escape during the emergency rescue of external-caused fire in a coal mine. Process Saf Environ. 2016;103:46–59. https://doi.org/10.1016/j.psep.2016.06.026.
Taylor G, Barrett H, Funk D, Nowlen S. Advances in understanding the phenomena of electrical cable fire-induced hot shorting. Trans Am Nucl Soc. 2011;104:485–6.
Li X, Si GY, Oh J, Corbett P, O’Sullivan T, Xiang ZZ, Aziz N, Mirzaghorbanali A. Effect of pretension on the performance of cable bolts and its optimisation in underground coal mines with various geological conditions. Int J Rock Mech Min Sci. 2022;152:105076. https://doi.org/10.1016/j.ijrmms.2022.105076.
Zhu YF, Wang DM, Shao ZL, Xu CH, Zhu XL, Qi XY, Liu FM. A statistical analysis of coalmine fires and explosions in China. Process Saf Environ. 2019;121:357–66. https://doi.org/10.1016/j.psep.2018.11.013.
Liu ZT, Chu XM, Lin S, Tian JW, Li XL, Gu ZJ. Trends and correlation characteristics of coal mine gas explosion accident factors: a case study. Energy Sour Part A: Recovery Utilization Environ Eff. 2021;2022:1–15. https://doi.org/10.1080/15567036.2022.2040657.
Wang GQ, Shi GQ, Yang YL, Liu S. Experimental study on the exogenous fire evolution and flue gas migration during the fire zone sealing period of the coal mining face. Fuel. 2022;320:123879. https://doi.org/10.1016/j.fuel.2022.123879.
Kaczorek-Chrobak K, Fangrat J, Papis BK. Calorimetric behaviour of electric cables. Energies. 2021;14(4):1007. https://doi.org/10.3390/en14041007.
Perka B, Piwowarski K. A method for determining the impact of ambient temperature on an electrical cable during a fire. Energies. 2021;14(21):7260. https://doi.org/10.3390/en14217260.
Li CY, Chen J, Zhang W, Hu LB, Cao JY, Liu JJ, Zhu ZY, Wu SQ. Influence of arc size on the ignition and flame propagation of cable fire. Energies. 2021;14(18):5675. https://doi.org/10.3390/en14185675.
Tripathy DP, Ala CK. Identification of safety hazards in Indian underground coal mines. J Sustain Min. 2018;17(4):175–83. https://doi.org/10.1016/j.jsm.2018.07.005.
Meinier R, Sonnier R, Zavaleta P, Suard S, Ferry L. Fire behavior of halogen-free flame-retardant electrical cables with the cone calorimeter. J Hazard Mater. 2018;342:306–16. https://doi.org/10.1016/j.jhazmat.2017.08.027.
Wang Z, Wei RC, Wang XH, He JJ, Wang J. Pyrolysis and combustion of polyvinyl chloride (PVC) sheath for new and aged cables via thermogravimetric analysis-Fourier transform infrared (TG-FTIR) and calorimeter. Materials. 2018;11(10):1997. https://doi.org/10.3390/ma11101997.
Chen XL, Zhang XY, Zhang XG, Jiao CM. Influence of isopropyl tris (dioctylphosphoryloxy) titanate for flame-retardant TPU based on oyster shell powder. J Therm Anal Calorim. 2020;139(1):197–206. https://doi.org/10.1007/s10973-019-08299-1.
Ai LH, Yang L, Hu JF, Chen SS. Synergistic flame retardant effect of organic phosphorus–nitrogen and inorganic boron flame retardant on polyethylene. Polym Eng Sci. 2020;60(2):414–22. https://doi.org/10.1002/pen.25296.
Cogen JM, Chaudhary BI, Ghosh-Dastidar A, Sun Y, Wasserman S. Flame-retardant aspects of XLPE. In: Thomas J, Thomas S, Ahmad Z, editors. Crosslinkable polyethylene. Singapore: Springer; 2021. p. 211–45. https://doi.org/10.1007/978-981-16-0514-7_9.
Liu C, Zong RW, Chen HY, Wang JL, Wu CP. Comparative study of toxicity for thermoplastic polyurethane and its flame-retardant composites. J Thermoplast Compos. 2019;32(10):1393–407. https://doi.org/10.1177/0892705718798409.
Jia PF, Cheng WH, Lu JY, Yin ZT, Xu ZM, Cheng L, Qiu Y, Qian LJ, Hu Y, Hu WZ, Wang BB. Applications of GO/OA-POSS layer-by-layer self-assembly nanocoating on flame retardancy and smoke suppression of flexible polyurethane foam. Polym Advan Technol. 2021;32(11):4516–30. https://doi.org/10.1002/pat.5453.
Kaczorek-Chrobak K, Fangrat J. Combustible material content vs. Fire properties of electric cables. Energies. 2020;13(23):6172. https://doi.org/10.3390/en13236172.
Zhou CL, Cao ZQ, Wei G, Wu K. Research on pyrolysis characteristics of pe outer sheath of high-voltage cables based on the principle of oxygen consumption. J Electr Eng Technol. 2023;18(1):679–85. https://doi.org/10.1007/s42835-022-01178-0.
Ren GZ, Huang WH, Jiang WD, Yu B, Lv HK, Zhang XL, Chen B, Liu AW. Spectral analysis of pyrolytic reaction products of typical high voltage cable materials. In: 2022 7th Asia conference on power and electrical engineering (ACPEE). IEEE. 2022; 1652–1658. https://doi.org/10.1109/ACPEE53904.2022.9783801.
Mun SY, Hwang CH. Experimental and numerical studies on major pyrolysis properties of flame retardant pvc cables composed of multiple materials. Materials. 2020;13(7):1712. https://doi.org/10.3390/ma13071712.
Wang YL, Kang N, Lin J, Lu SX, Kim M. On the pyrolysis characteristic parameters of four flame-retardant classes of PVC sheathless cable insulation materials. J Anal Appl Pyrol. 2023;170:105901. https://doi.org/10.1016/j.jaap.2023.105901.
Zhang JQ, Zhang BS, Fan MH, Wang LF, Guo XJ, Yu DY. Effects of external heat radiation on combustion and toxic gas release of flame retardant cables. Mater Sci Forum. 2017;898:2392–8. https://doi.org/10.4028/www.scientific.net/MSF.898.2392.
Rao BN, Arunjothi R. Assessing smoke and heat release during combustion of electric cables using cone calorimeter. In: Proceedings of the 9th international conference on insulated cables-JICABLE, Versailles, France, 2015; 21–24.
Zhang Z, He YH, Wu Y. Experimental study on smoke characteristics of aviation cable material based on cone calorimeter. In: 2019 9th international conference on fire science and fire protection engineering (ICFSFPE). 2019; 1–7. https://doi.org/10.1109/ICFSFPE48751.2019.9055786.
Li A, Huang BQ, Zhang WL, Ding YM, Zhou R. Experimental study on pyrolysis gas products of chlorinated polyvinyl chloride and its smoke properties during combustion. J Therm Anal Calorim. 2022;147(15):8213–24. https://doi.org/10.1007/s10973-021-11156-9.
Seo HJ, Kim NK, Lee MC, Lee SK, Moon YS. Investigation into the toxicity of combustion products for CR/EPR cables based on aging period. J Mech Sci Technol. 2020;34(4):1785–94. https://doi.org/10.1007/s12206-020-0340-z.
You JS, Chung YJ. Risk of smoke occurring in the combustion of plastics. Fire Sci Eng. 2019;33(1):69–75. https://doi.org/10.7731/KIFSE.2019.33.1.069.
Mat-Kiah MH, Mustafa BG, Andrews GE, Phylaktou R, Li H. PVC sheathed electrical cable fire smoke toxicity. Saint-Petersburg Polytech Univ Press. 2019;2:1176–86.
Gann RG, Marsh ND. Comparison of smoke component yields between room-scale and bench-scale experiments. Fire Mater. 2021;45(2):225–49. https://doi.org/10.1002/fam.2927.
Jiang ZH, Liu ZJ, Fei BH, Cai ZY, Yu Y, Liu XE. The pyrolysis characteristics of moso bamboo. J Anal Appl Pyrol. 2012;94:48–52. https://doi.org/10.1016/j.jaap.2011.10.010.
Farag S, Chaouki J. A modified microwave thermo-gravimetric-analyzer for kinetic purposes. Appl Therm Eng. 2015;75:65–72. https://doi.org/10.1016/j.applthermaleng.2014.09.038.
Xu L, Li SC, Sun WH, Ma X, Cao SH. Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions. Energy. 2020;203:117831. https://doi.org/10.1016/j.energy.2020.117831.
Gu XL, Ma X, Li LX, Liu C, Cheng KH, Li ZZ. Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS. J Anal Appl Pyrol. 2013;102:16–23. https://doi.org/10.1016/j.jaap.2013.04.009.
Li LM, Zhang HP, Xie QY, Chen L, Xu CM. Experimental study on fire hazard of typical curtain materials in ISO 9705 fire test room. Fire Mater. 2012;36(2):85–96. https://doi.org/10.1002/fam.1089.
Delichatsios MM, Delichatsios MA. Upward flame spread and critical conditions for PE/PVC cables in a tray configuration. Fire Saf Sci. 2010;4:433–44. https://doi.org/10.3801/IAFSS.FSS.4-433.
Funding
This work was supported by the National Key R & D Plan of China (2021YFE0105000), the National Natural Science Foundation of China (52074213), Shaanxi Key R & D Plan Project (2021SF-472 and 2021GY-131), Yulin Science and Technology Plan Project (CXY-2020-036 and CXY-2020-037), Science and Technology Fund for Outstanding Young People of Xi’an University of Science and Technology (2019YQ2-01), and Xi’an Science and Technology Plan Project (2020KJRC0068).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, W., Huo, Y., Kang, F. et al. Study on hazard of smoke generated by mining cable fires. J Therm Anal Calorim (2023). https://doi.org/10.1007/s10973-023-12136-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10973-023-12136-x