Skip to main content
Log in

Mixed convective bi-component SiO2–Al2O3/H2O hybrid nanofluid flow over a sphere

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this study is to analyze the mixed convective bi-component hybrid nanofluid flow over a sphere. The equations governing the flow are transformed via dimensionless coordinates using non-similar transformations. The obtained partial differential equations, that are highly nonlinear, are linearized using the quasilinearization technique, and an efficient implicit finite difference method is adopted to solve for the unknown parameters. The consequences of various values of nanoparticle volume fractions, mixed convection parameter and viscous dissipation parameter on essential parameters such as skin friction and heat transfer coefficients are graphically depicted and the results were discussed.  The temperature and heat transfer coefficient values are observed to be higher for the hybrid nanofluid than the base fluid and nanofluids silica/water and alumina/water. Silica–alumina/water hybrid nanofluid depicts the highest heat transfer rate for a higher nanoparticle volume fraction of alumina than that of silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Johnson AT, Kirk GD, Moon SH, Shih TM. Numerical and experimental analysis of mixed forced and natural convection about a sphere. Trans ASAE. 1988;31:0293–9.

    Article  Google Scholar 

  2. Nazar R, Amin N, Pop I. On the mixed convection boundary-layer flow about a solid sphere with constant surface temperature. Arab J Sci Eng. 2002;27:117–35.

    Google Scholar 

  3. Salleh MZ, Nazar R, Pop I. Mixed convection boundary layer flow about a solid sphere with Newtonian heating. Arch Mech. 2010;62:283–303.

    Google Scholar 

  4. Alkasasbeh HT, Salleh MZ, Tahar RM, Nazar R, Pop I. Mixed convection boundary layer flow about a solid sphere with convective boundary conditions. Wulfenia J. 2014;21:386–404.

    Google Scholar 

  5. Loganathan P, Arasu PP. Thermophoresis effects on non-Darcy MHD mixed convective heat and mass transfer past a porous wedge in the presence of suction/injection. Theor Appl Mech. 2010;37:203–27.

    Article  Google Scholar 

  6. Loganathan P, Arasu PP, Kandasamy R. Local non-similarity solution to impact of chemical reaction on MHD mixed convection heat and mass transfer flow over porous wedge in the presence of suction/injection. Appl Math Mech. 2010;31:1517–26.

    Article  Google Scholar 

  7. Mohamed MKA, Sarif NM, Noar N, Salleh MZ, Ishak A. Viscous dissipation effect on the mixed convection boundary layer flow towards solid sphere. Trans Sci Technol. 2016;3:59–67.

    Google Scholar 

  8. Nath D, Pati S, Raju BHS. Analysis of mixed convection past a heated sphere. Proc Inst Mech Eng E J Process Mech Eng. 2019;233:601–16.

    Article  CAS  Google Scholar 

  9. Ghani M, Rumite W. Keller-Box scheme to mixed convection flow over a solid sphere with the effect of MHD. MUST J Math Educ Sci Technol. 2021;6:97–120.

    Article  Google Scholar 

  10. Jenifer AS, Saikrishnan P, Lewis RW. Unsteady MHD mixed convection flow of water over a sphere with mass transfer. J Appl Comput Mech. 2021;7:935–43.

    Google Scholar 

  11. Erkan A, Tüccar G, Tosun E, Özgür T. Comparison of effects of nanofluid utilization (\(Al_2O_3\), \(SiO_2\), \(TiO_2\)) with reference water in automotive radiators on exergetic properties of diesel engines. SN Appl Sci. 2021;3:1–13.

    Article  Google Scholar 

  12. Tham L, Nazar R, Pop I. Mixed convection boundary-layer flow about an isothermal solid sphere in a nanofluid. Phys Scr. 2011;84: 025403.

    Article  Google Scholar 

  13. Chamkha A, Gorla RSR, Ghodeswar K. Non-similar solution for natural convective boundary layer flow over a sphere embedded in a porous medium saturated with a nanofluid. Transp Porous Media. 2011;86:13–22.

    Article  CAS  Google Scholar 

  14. Rashad AM. Natural convection boundary layer flow along a sphere embedded in a porous medium filled with a nanofluid. Lat Am Appl Res. 2014;44:149–57.

    Google Scholar 

  15. Tham L, Nazar R. Numerical solution of mixed convection flow about a sphere in a porous medium saturated by a nanofluid: Brinkman model. J Sci Technol. 2012;4:35–46.

    Google Scholar 

  16. Loganathan P, Chand PN, Ganesan P. Radiation effects on an unsteady natural convective flow of a nanofluid past an infinite vertical plate. Nano. 2013;08:1350001.

    Article  Google Scholar 

  17. Venkateswarlu B, Narayana PVS. Chemical reaction and radiation absorption effects on the flow and heat transfer of a nanofluid in a rotating system. Appl Nanosci. 2015;5:351–60.

    Article  CAS  Google Scholar 

  18. Narayana PVS, Venkateswarlu B, Venkataramana S. Thermal radiation and heat source effects on a MHD nanofluid past a vertical plate in a rotating system with porous medium. Heat Trans Asian Res. 2015;44:1–19.

    Article  Google Scholar 

  19. Tarakaramu N, Narayana PVS. Chemical reaction effects on bio-convection nanofluid flow between two parallel plates in rotating system with variable viscosity: a numerical study. J Appl Comput Mech. 2019;5:791–803.

    Google Scholar 

  20. Alwawi FA, Alkasasbeh HT, Rashad AM, Idris R. Natural convection flow of Sodium Alginate based Casson nanofluid about a solid sphere in the presence of a magnetic field with constant surface heat flux. J Phys Conf Ser. 2019;1366: 012005.

    Article  CAS  Google Scholar 

  21. Ibrahim W, Zemedu C. Non-linear convection flow of micro polar nanofluid past an isothermal sphere. J Phys Commun. 2019;3: 115017.

    Article  CAS  Google Scholar 

  22. Vasu B, Gorla RSR, Bég OA, Murthy P, Prasad VR, Kadir A. Unsteady flow of a nanofluid over a sphere with nonlinear Boussinesq approximation. J Thermophys Heat Transf. 2019;33:343–55.

    Article  CAS  Google Scholar 

  23. Widodo B, Nugraha AS, Thahiruddin M. Numerical solution of unsteady \(Al_2O_3\)-water nanofluid flow past a magnetic porous sliced sphere. J Phys Conf Ser. 2020;1490: 012070.

    Article  CAS  Google Scholar 

  24. Mohamed MKA, Salleh MZ, Ishak A, Nazar R. Mixed convection boundary layer flow on a solid sphere in a nanofluid with the presence of viscous dissipation. ASM Sci J. 2020;13:1–7.

    Google Scholar 

  25. Patil PM, Shankar HF, Hiremath PS, Momoniat E. Nonlinear mixed convective nanofluid flow about a rough sphere with the diffusion of liquid hydrogen. Alex Eng J. 2021;60:1043–53.

    Article  Google Scholar 

  26. Mohamed RA, Hady FM, Mahdy A, Abo-zai OA. Laminar MHD natural convection flow due to non-Newtonian nanofluid with dust nanoparticles around an isothermal sphere: Non-similar solution. Phys Scr. 2021;96: 035215.

    Article  CAS  Google Scholar 

  27. Rostami MN, Dinarvand S, Pop I. Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid. Chin J Phys. 2018;56:2465–78.

    Article  CAS  Google Scholar 

  28. Yıldız Ç, Arıcı M, Karabay H. Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of \(Al_2O_3-SiO_2\)/water hybrid-nanofluid. Int J Heat Mass Transf. 2019;140:598–605.

    Article  Google Scholar 

  29. Khan MR, Pan K, Khan AU, Nadeem S. Dual solutions for mixed convection flow of \(SiO_2-Al_2O_3\)/water hybrid nanofluid near the stagnation point over a curved surface. Phys A Stat Mech Appl. 2020;547: 123959.

    Article  CAS  Google Scholar 

  30. Saghir MZ, Rahman MM. Forced convection of \(Al_2O_3-Cu\), \(TiO_2-SiO_2\), \(FWCNT-Fe_3O_4\), and \(ND-Fe_3O_4\) hybrid nanofluid in porous media. Energies. 2020;13:2902.

    Article  CAS  Google Scholar 

  31. Roşca AV, Roşca NC, Pop I. Mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with a second order velocity model. Int J Numer Methods Heat Fluid Flow. 2020;31:75–91.

    Article  Google Scholar 

  32. Zainal N, Nazar R, Naganthran K, Pop I. Unsteady EMHD stagnation point flow over a stretching/shrinking sheet in a hybrid \(Al_2O_3-Cu/H_2O\) nanofluid. Int Commun Heat Mass Transf. 2021;123: 105205.

    Article  CAS  Google Scholar 

  33. Venkateswarlu B, Narayana PVS. \(Cu-Al_2O_3/H_2O\) hybrid nanofluid flow past a porous stretching sheet due to temperatue-dependent viscosity and viscous dissipation. Heat Transf. 2021;50:432–49.

    Article  Google Scholar 

  34. Salleh SNA, Bachok N, Pop I. Mixed convection stagnation point flow of a hybrid nanofluid past a permeable flat plate with radiation effect. Math. 2021;9:2681.

    Article  Google Scholar 

  35. Jamaludin A, Nazar R, Naganthran K, Pop I. Mixed convection hybrid nanofluid flow over an exponentially accelerating surface in a porous media. Neural Comput Appl. 2021;33:15719–29.

    Article  Google Scholar 

  36. Wahid NS, Arifin NM, Khashi’ie NS, Pop I, Bachok N, Hafidzuddin MEH. MHD mixed convection flow of a hybrid nanofluid past a permeable vertical flat plate with thermal radiation effect. Alex Eng J. 2022;61:3323–33.

    Article  Google Scholar 

  37. Gul T, Ali B, Alghamdi W, Nasir S, Saeed A, Kumam P, Mukhtar S, Kumam W, Jawad M. Mixed convection stagnation point flow of the blood based hybrid nanofluid around a rotating sphere. Sci Rep. 2021;11:1–15.

    Article  Google Scholar 

  38. Kho YB, Jusoh R, Salleh MZ, Mohamed MKA, Ismail Z, Hamid RA. Inclusion of viscous dissipation on the boundary layer flow of \(Cu-TiO_2\) hybrid nanofluid over stretching/shrinking sheet. J Adv Res Fluid Mech Therm Sci. 2021;88:64–79.

    Article  Google Scholar 

  39. Khan WU, Awais M, Parveen N, Ali A, Awan SE, Malik MY, He Y. Analytical assessment of \((Al_2O_3-Ag/H_2O)\) hybrid nanofluid influenced by induced magnetic field for second law analysis with mixed convection, viscous dissipation and heat generation. Coatings. 2021;11:498.

    Article  CAS  Google Scholar 

  40. Patil PM, Shankar HF, Sheremet MA. Mixed convection of silica-molybdenum disulphide/water hybrid nanoliquid over a rough sphere. Symmetry. 2021;13:236.

    Article  CAS  Google Scholar 

  41. Roşca NC, Roşca AV, Pop I. Mixed convection flow of a hybrid nanofluid past a vertical wedge with thermal radiation effect. Int J Numer Methods Heat Fluid Flow. 2021;32:806–24.

  42. Ojjela O. Numerical investigation of heat transport in alumina-silica hybrid nanofluid flow with modeling and simulation. Math Comput Simul. 2022;193:100–22.

    Article  Google Scholar 

  43. Patil PM, Doddagoudar SH, Shankar HF. Influence of nonlinear thermal radiation on mixed convective hybrid nanofluid flow about a rotating sphere. Heat Transf. 2022;51:5874–95.

    Article  Google Scholar 

  44. Patil PM, Benawadi S, Shanker B. Influence of mixed convection nanofluid flow over a rotating sphere in the presence of diffusion of liquid hydrogen and ammonia. Math Comput Simul. 2022;194:764–81.

    Article  Google Scholar 

  45. Patil PM, Benawadi S, Tonannavar JR, Shanker B. Homogeneous and heterogeneous reactions in the mixed convection flow of hybrid nanofluid over a slender cylinder. Asia-Pac J Chem Eng. 2022;17: e2740.

    Article  CAS  Google Scholar 

  46. Patil PM, Kulkarni M. Analysis of MHD mixed convection in a \(Ag-TiO_2\) hybrid nanofluid flow past a slender cylinder. Chin J Phys. 2021;73:406–19.

    Article  CAS  Google Scholar 

  47. Patil PM, Goudar B. Time-dependent mixed convection flow of \(Ag-MgO\)/water hybrid nanofluid over a moving vertical cone with rough surface. J Therm Anal Calorim. 2022;147:10693–705.

    Article  CAS  Google Scholar 

  48. Rajakumar J, Saikrishnan P, Chamkha A. Non-uniform mass transfer in MHD mixed convection flow of water over a sphere with variable viscosity and Prandtl number. Int J Numer Methods Heat Fluid Flow. 2016;26:2235–51.

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks the National Institute of Technology Tiruchirappalli, India for supporting this research through institute fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Saikrishnan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are related to the objectives of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenifer, A.S., Saikrishnan, P. Mixed convective bi-component SiO2–Al2O3/H2O hybrid nanofluid flow over a sphere. J Therm Anal Calorim 148, 5603–5612 (2023). https://doi.org/10.1007/s10973-023-12131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12131-2

Keywords

Mathematics Subject Classification

Navigation