Skip to main content
Log in

Experimental investigation and optimization of sand-coated solar air collector parameters by fuzzy-MCDM integrated decision approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A sand-coated solar air collector (SCSAC) is simulated and optimized using an integrated expert technique fuzzy C-Means Takagi–Sugeno–Kang fuzzy logic technique for order preference by similarity to ideal solution (FCM-TSK-FL-TOPSIS) for climatic conditions of Bangalore rural, Southern part of India. In this study, the FCM method was used to cluster the experimental dataset, and TSK-FL is used to predict the optimal experimental data, while TOPSIS is applied in order to optimize SAC input and output parameters. Different governing characteristics are taken into account as input parameters, such as air mass flow rate, collector tilt angle, solar radiation, and ambient temperature, while thermal efficiency, temperature rise, and pressure drop are output parameters. Initially, the input parameters of a sand-coated SAC are varied in order to conduct experiments. Finally, results are revealed from the integrated method for sand-coated SAC experimental optimal input setting as 0.010 kgs−1 mass flow rate, 933.7 Wm−2 solar radiation, 35.33 °C temperature inlet and corresponding output optimal parameters such as temperature rise is 61.4 °C, energy efficiency 34.48%, and pressure drop of 6.86 Pa. This integrated method is beneficial for researchers who are engaged in the optimization of solar thermal systems and industries applications which involve drying, heating, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(A_{{\text{c}}}\) :

Collector cross-section area in m2

\(c_{{\text{p}}}\) :

Specific heat of air at constant pressure kJkg1 K1

\(I_{{\text{s}}}\) :

Solar radiation Wm2

\(L\) :

Length of collector m

\(m\) :

Mass flow rate of air kgs1

\(\Delta P\) :

Pressure drop Pa

\(Q_{{{\text{ab}}}}\) :

Useful energy gain W

\(Q_{{\text{s}}}\) :

Energy incident on collector W

\(T_{1}\) :

Inlet temperature °C

\(T_{2}\) :

Outlet temperature °C

\(\Delta T\) :

Rise in temperature °C

\(W\) :

Width of collector m

\(w_{1} ,w_{2}\) :

Uncertainties in x

\(W_{{\text{R}}}\) :

Total uncertainty %

\(x\) :

Independent variables

\(\eta_{{{\text{ee}}}}\) :

Energy efficiency %

\(\Delta\) :

Deviation

\(a\) :

Air

\(c\) :

Collector

\(ee\) :

Energy efficiency

\(1\) :

Inlet

\(2\) :

Outlet

References

  1. Öztürk HH, Demirel Y. Exergy based performance analysis of packed bed solar air heaters. Int J Energy Res. 2004;28(5):423–32.

    Article  Google Scholar 

  2. Gupta MK, Kaushik SC. Exergetic performance evaluation and parametric studies of solar air heater. Energy. 2008;33(11):1691–702.

    Article  Google Scholar 

  3. Esen H. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Build Environ. 2008;43(6):1046–54.

    Article  Google Scholar 

  4. Alta D, Bilgili E, Ertekin C, Yaldiz O. Experimental investigation of three different solar air heaters: energy and exergy analyses. Appl Energy. 2010;87(10):2953–73.

    Article  CAS  Google Scholar 

  5. Saidur R, BoroumandJazi G, Mekhlif S, Jameel M. Exergy analysis of solar energy applications. Renew Sustain Energy Rev. 2012;16(1):350–6.

    Article  Google Scholar 

  6. Jafarkazemi F, Ahmadifard E. Energetic and exergetic evaluation of flat plate solar collectors. Renew Energy. 2013;56:55–63.

    Article  Google Scholar 

  7. Velmurugan P, Kalaivanan R. Energy and exergy analysis of solar air heaters with varied geometries. Arab J Sci Eng. 2015;40(4):1173–86.

    Article  Google Scholar 

  8. Suzuki A. A fundamental equation for exergy balance on solar collectors. J Sol Energy Eng. 1988;110(2):102–6.

    Article  CAS  Google Scholar 

  9. Sun C, Liu Y, Duan C, Zheng Y, Chang H, Shu S. A mathematical model to investigate on the thermal performance of a flat plate solar air collector and its experimental verification. Energy Convers Manag. 2016;115:43–51.

    Article  Google Scholar 

  10. Das B, Giri A. Second law analysis of an array of vertical plate-finned heat sink undergoing mixed convection. Int Commun Heat Mass Transf. 2014;1(56):42–9.

    Article  Google Scholar 

  11. Baritto M, Bracamonte J. A dimensionless model for the outlet temperature of a no isothermal flat plate solar collector for air heating. Sol Energy. 2012;86(1):647–53.

    Article  Google Scholar 

  12. Hegazy AA. Thermohydraulic performance of air heating solar collectors with variable width, flat absorber plates. Energy Convers Manag. 2000;41(13):1361–78.

    Article  Google Scholar 

  13. El Ferouali H, Zoukit A, Salhi I, El Kilali T, Doubabi S, Abdenouri N. Thermal efficiency and exergy enhancement of solar air heaters, comparative study and experimental investigation. J Renew Sustain Energy. 2018;10(4):043709.

    Article  Google Scholar 

  14. Pérez-Espinosa R, García-Valladares O. Solar collector simulator (SolCoSi): a new validated model for predicting the thermal performance of flat plate solar collectors. J Renew Sustain Energy. 2018;10(1):013705.

    Article  Google Scholar 

  15. Debnath S, Das B, Randive PR, Pandey KM. Performance analysis of solar air collector in the climatic condition of North Eastern India. Energy. 2018;165:281–98.

    Article  Google Scholar 

  16. Kalogirou SA. Prediction of flat-plate collector performance parameters using artificial neural networks. Sol Energy. 2006;80(3):248–59.

    Article  CAS  Google Scholar 

  17. Esen H, Ozgen F, Esen M, Sengur A. Artificial neural network and wavelet neural network approaches for modelling of a solar air heater. Expert Syst Appl. 2009;36(8):11240–8.

    Article  Google Scholar 

  18. Caner M, Gedik E, Keçebaş A. Investigation on thermal performance calculation of two type solar air collectors using artificial neural network. Expert Syst Appl. 2011;38(3):1668–74.

    Article  Google Scholar 

  19. Benli H. Determination of thermal performance calculation of two different types solar air collectors with the use of artificial neural networks. Int J Heat Mass Transf. 2013;60:1–7.

    Article  Google Scholar 

  20. Ghritlahre HK, Prasad RK. Prediction of thermal performance of unidirectional flow porous bed solar air heater with optimal training function using artificial neural network. Energy Procedia. 2017;109:369–76.

    Article  Google Scholar 

  21. Kamthania D, Tiwari GN. Performance analysis of an integrated photovoltaic thermal double pass air collector using ANN. Appl Sol Energy. 2012;48(3):186–92.

    Article  Google Scholar 

  22. Varun G, Siddhartha S. Thermal performance optimization of a flat plate solar air heater using genetic algorithm. Appl Energy. 2010;87:1793–9.

    Article  Google Scholar 

  23. Sharma N, Bhat IK, Grover D. Optimization of a smooth flat plate solar air heater using stochastic iterative perturbation technique. Sol Energy. 2011;85(9):2331–7.

    Article  Google Scholar 

  24. Sharma N. A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater. Energy. 2012;38(1):406–13.

    Article  Google Scholar 

  25. Vafaei LE, Sah M. Predicting efficiency of flat-plate solar collector using a fuzzy inference system. Procedia Comput Sci. 2017;120:221–8.

    Article  Google Scholar 

  26. Mohanty S, Rout A, Patra PK, Sahoo SS. ANFIS based solar radiation data forecasting for energy and economic Study of solar water heaters in eastern India. Int J Control Theory Appl. 2017;10:179–90.

    Google Scholar 

  27. Erenturk S, Erenturk K. Comparisons of novel modeling techniques to analyze thermal performance of unglazed transpired solar collectors. Measurement. 2018;116:412–21.

    Article  Google Scholar 

  28. Sugeno M, Kang GT. Fuzzy modelling and control of multilayer incinerator. Fuzzy Sets Syst. 1986;18(3):329–45.

    Article  Google Scholar 

  29. Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern Syst. 1985;1:116–32.

    Article  Google Scholar 

  30. Hamam A, Georganas ND. A comparison of Mamdani and Sugeno fuzzy inference systems for evaluating the quality of experience of Hapto-Audio-Visual applications. In: 2008 IEEE International Workshop on Haptic Audio-visual Environments and Games. 2008: 87–92.

  31. Chiu SL. Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst. 1994;2(3):267–78.

    Article  Google Scholar 

  32. Nadeem S, Qadeer S, Akhtar S, Almutairi S, Fuzhang W. Mathematical model of convective heat transfer for peristaltic flow of Rabinowitsch fluid in a wavy rectangular duct with entropy generation. Phys Scr. 2022;97(6):065205.

    Article  Google Scholar 

  33. Nadeem S, Qadeer S, Akhtar S, El Shafey AM, Issakhov A. Eigenfunction expansion method for peristaltic flow of hybrid nanofluid flow having single-walled carbon nanotube and multi-walled carbon nanotube in a wavy rectangular duct. Sci Prog. 2021;104(4):00368504211050292.

    Article  CAS  Google Scholar 

  34. Wankhede SV, Hole JA. MOORA and TOPSIS based selection of input parameter in solar powered absorption refrigeration system. Int J Ambient Energy. 2020;15:1–6.

    Google Scholar 

  35. Schwämmle V, Jensen ON. A simple and fast method to determine the parameters for fuzzy c–means cluster analysis. Bioinformatics. 2010;26(22):2841–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagadish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, J., Jagadish, Das, B. et al. Experimental investigation and optimization of sand-coated solar air collector parameters by fuzzy-MCDM integrated decision approach. J Therm Anal Calorim 148, 5543–5556 (2023). https://doi.org/10.1007/s10973-023-12114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12114-3

Keywords

Navigation