Skip to main content
Log in

Performance of soot oxidation by O2/NO/N2 atmosphere in various catalyst species

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Soot combustion in the presence of the commercial catalyst in the O2/NO/N2 atmosphere is studied by thermalgravimetric analysis method. The comprehensive combustion index (S) and the peak temperature (Tp) are applied to evaluate the combustion performance of soot/catalyst mixtures. Pt/Al2O3 catalyst exhibits remarkable ability in the conversion of NO into NO2 compared with CeO2. PU (Printex-U) particles are the common substitute for soot due to its similar physicochemical properties with soot. The PU/Pt mixture with 5 g ft−3 Pt content effectively promotes soot combustion by decreasing 511 °C for Tp compared with the mixtures with 2 and 10 g ft−3, while the S is not sensitive with Pt contents rather than catalyst species. The mass ratio of PU/Pt mixtures and NO concentration have great influences on soot combustion. The proper mass ratio optimizes the catalytic soot combustion applying 1:5 PU/Pt mixture in the 1600 ppm NO atmosphere. The maximum S and minimum Tp are 13.75 × 10–8 %2 min−2 °C−3 and 491 °C, respectively. The reason is that the conversion of NO to NO2 and the coefficient of NO2 utilization in soot combustion are improving greatly by Pt catalyst. The results innovate soot combustion by the commercial catalyst and O2/NO atmosphere, which promotes the optimization policy of improving diesel exhaust atmosphere and DPF (diesel particulate filter, DPF) low-temperature regeneration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang Z, Jiaqiang E, Deng Y, Pham M, Zuo W, Peng Q, et al. Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled marine diesel engine. Energy Convers Manag. 2018;159:244–53. https://doi.org/10.1016/j.enconman.2017.12.098.

    Article  CAS  Google Scholar 

  2. Meng Z, Li J, Fang J, Tan J, Qin Y, Jiang Y, et al. Experimental study on regeneration performance and particle emission characteristics of DPF with different inlet transition sections lengths. Fuel. 2020;262:116487. https://doi.org/10.1016/j.fuel.2019.116487.

    Article  CAS  Google Scholar 

  3. Viswanathan K, Ikhsan Taipabu M, Wu W. Novel Petit grain bitter orange waste peel oil biofuel investigation in diesel engine with modified fuel injection pressure and bowl geometry. Fuel. 2022;319:123660. https://doi.org/10.1016/j.fuel.2022.123660.

    Article  CAS  Google Scholar 

  4. Viswanathan K, Huang J-M, Tsai T-H, Chang J-S, Wu W. Exploration of algal biorefinery frameworks: optimization, quantification of environmental impacts and economics. Algal Res. 2023;69:102903. https://doi.org/10.1016/j.algal.2022.102903.

    Article  Google Scholar 

  5. Shi Y, Zhou Y, Li Z, Cai Y, Li X, He Y, et al. Effect of temperature control conditions on DPF regeneration by nonthermal plasma. Chemosphere. 2022;302:134787. https://doi.org/10.1016/j.chemosphere.2022.134787.

    Article  CAS  PubMed  Google Scholar 

  6. Shi Y, Lu Y, Cai Y, He Y, Zhou Y, Fang J. Evolution of particulate matter deposited in the DPF channel during low-temperature regeneration by non-thermal plasma. Fuel. 2022;318:123552. https://doi.org/10.1016/j.fuel.2022.123552.

    Article  CAS  Google Scholar 

  7. Ganesan N, Viswanathan K, Karthic SV, Ekambaram P, Wu W, Vo D-VN. Split injection strategies based RCCI combustion analysis with waste cooking oil biofuel and methanol in an open ECU assisted CRDI engine. Fuel. 2022;319:123710. https://doi.org/10.1016/j.fuel.2022.123710.

    Article  CAS  Google Scholar 

  8. Fang J, Zhang Q, Meng Z, Luo Y, Ou J, Du Y, et al. Effects of ash composition and ash stack heights on soot deposition and oxidation processes in catalytic diesel particulate filter. J Energy Inst. 2020;93(5):1942–50. https://doi.org/10.1016/j.joei.2020.04.009.

    Article  CAS  Google Scholar 

  9. Shi Y, Cai Y, Li X, Ji L, Chen Y, Wang W. Evolution of diesel particulate physicochemical properties using nonthermal plasma. Fuel. 2019;253:1292–9. https://doi.org/10.1016/j.fuel.2019.05.106.

    Article  CAS  Google Scholar 

  10. Yezerets A, Currier NW, Kim DH, Eadler HA, Epling WS, Peden CHF. Differential kinetic analysis of diesel particulate matter (soot) oxidation by oxygen using a step–response technique. Appl Catal B. 2005;61(1–2):120–9. https://doi.org/10.1016/j.apcatb.2005.04.014.

    Article  CAS  Google Scholar 

  11. Gao J, Tian G, Ma C, Chen J, Huang L. Physicochemical property changes during oxidation process for diesel PM sampled at different tailpipe positions. Fuel. 2018;219:62–8. https://doi.org/10.1016/j.fuel.2018.01.074.

    Article  CAS  Google Scholar 

  12. Viswanathan K, Wu W, Taipabu MI, Chandra-Ambhorn W. Effects of antioxidant and ceramic coating on performance enhancement and emission reduction of a diesel engine fueled by Annona oil biodiesel. J Taiwan Inst Chem Eng. 2021;125:243–56. https://doi.org/10.1016/j.jtice.2021.06.041.

    Article  CAS  Google Scholar 

  13. Viswanathan K, Wang S. Experimental investigation on the application of preheated fish oil ethyl ester as a fuel in diesel engine. Fuel. 2021;285:119244. https://doi.org/10.1016/j.fuel.2020.119244.

    Article  CAS  Google Scholar 

  14. Yuan C, Liu Q, Li P, Barati B, Viswanathan K, Zhao S, et al. Biofuel characteristic of waste clay oil pyrolysis. J Anal Appl Pyrol. 2021;156:105117. https://doi.org/10.1016/j.jaap.2021.105117.

    Article  CAS  Google Scholar 

  15. Yehliu K, Armas O, Vander Wal RL, Boehman AL. Impact of engine operating modes and combustion phasing on the reactivity of diesel soot. Combust Flame. 2013;160(3):682–91. https://doi.org/10.1016/j.combustflame.2012.11.003.

    Article  CAS  Google Scholar 

  16. Jiaqiang E, Zhao X, Xie L, Zhang B, Chen J, Zuo Q, et al. Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory. Energy. 2019;169:719–29. https://doi.org/10.1016/j.energy.2018.12.086.

    Article  CAS  Google Scholar 

  17. Fang J, Meng Z, Li J, Du Y, Qin Y, Jiang Y, et al. The effect of operating parameters on regeneration characteristics and particulate emission characteristics of diesel particulate filters. Appl Therm Eng. 2019;148:860–7. https://doi.org/10.1016/j.applthermaleng.2018.11.066.

    Article  CAS  Google Scholar 

  18. Liu J, Dumitrescu CE. Analysis of two-stage natural-gas lean combustion inside a diesel geometry. Appl Therm Eng. 2019;160:114116. https://doi.org/10.1016/j.applthermaleng.2019.114116.

    Article  CAS  Google Scholar 

  19. Yi C, Fang J, Pu P, Yang Y, Chen Z, Zuo Z, et al. Insight into catalytic activity of K-Ce catalysts and K-Ce based mixed catalysts on diesel soot combustion. Molecular Catalysis. 2023;535:112905. https://doi.org/10.1016/j.mcat.2022.112905.

    Article  Google Scholar 

  20. Liu J, Ulishney CJ, Dumitrescu CE. Experimental investigation of a heavy-duty natural gas engine performance operated at stoichiometric and lean operations. Energy Convers Manag. 2021;243:114401. https://doi.org/10.1016/j.enconman.2021.114401.

    Article  CAS  Google Scholar 

  21. Pu P, Fang J, Zhang Q, Yang Y, Qin Z, Meng Z, et al. Effect of operating parameters on oxidation characteristics of soot under the synergistic action of soluble organic fractions and ash. ACS Omega. 2021;6(27):17372–8. https://doi.org/10.1021/acsomega.1c01537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Messerer A, Niessner R, Pöschl U. Comprehensive kinetic characterization of the oxidation and gasification of model and real diesel soot by nitrogen oxides and oxygen under engine exhaust conditions: measurement, Langmuir-Hinshelwood, and Arrhenius parameters. Carbon. 2006;44(2):307–24. https://doi.org/10.1016/j.carbon.2005.07.017.

    Article  CAS  Google Scholar 

  23. Vojtisek-Lom M, Beranek V, Klir V, Jindra P, Pechout M, Vorisek T. On-road and laboratory emissions of NO, NO2, NH3, N2O and CH4 from late-model EU light utility vehicles: comparison of diesel and CNG. Sci Total Environ. 2018;616–617:774–84. https://doi.org/10.1016/j.scitotenv.2017.10.248.

    Article  CAS  PubMed  Google Scholar 

  24. Fang J, Shi R, Meng Z, Jiang Y, Qin Z, Zhang Q, et al. The interaction effect of catalyst and ash on diesel soot oxidation by thermogravimetric analysis. Fuel. 2019;258:116151. https://doi.org/10.1016/j.fuel.2019.116151.

    Article  CAS  Google Scholar 

  25. Boutikos P, Žák A, Kočí P. CO and hydrocarbon light-off inhibition by pre-adsorbed NOx on Pt/CeO2/Al2O3 and Pd/CeO2/Al2O3 diesel oxidation catalysts. Chem Eng Sci. 2019;209:115201. https://doi.org/10.1016/j.ces.2019.115201.

    Article  CAS  Google Scholar 

  26. Xiong J, Mei X, Liu J, Wei Y, Zhao Z, Xie Z, et al. Efficiently multifunctional catalysts of 3D ordered meso-macroporous Ce0.3Zr0.7O2-supported PdAu@CeO2 core-shell nanoparticles for soot oxidation: synergetic effect of Pd-Au-CeO2 ternary components. Appl Catal B Environ. 2019;251:247–60. https://doi.org/10.1016/j.apcatb.2019.03.078.

    Article  CAS  Google Scholar 

  27. Andana T, Piumetti M, Bensaid S, Veyre L, Thieuleux C, Russo N, et al. Nanostructured equimolar ceria-praseodymia for NOx-assisted soot oxidation: insight into Pr dominance over Pt nanoparticles and metal–support interaction. Appl Catal B. 2018;226:147–61. https://doi.org/10.1016/j.apcatb.2017.12.048.

    Article  CAS  Google Scholar 

  28. Liu S, Wu X, Weng D, Li M, Fan J. Sulfation of Pt/Al2O3 catalyst for soot oxidation: high utilization of NO2 and oxidation of surface oxygenated complexes. Appl Catal B. 2013;138–139:199–211. https://doi.org/10.1016/j.apcatb.2013.02.053.

    Article  CAS  Google Scholar 

  29. Liu S, Wu X, Weng D, Ran R. Ceria-based catalysts for soot oxidation: a review. J Rare Earths. 2015;33(6):567–90. https://doi.org/10.1016/s1002-0721(14)60457-9.

    Article  CAS  Google Scholar 

  30. Bueno-López A. Diesel soot combustion ceria catalysts. Appl Catal B. 2014;146:1–11. https://doi.org/10.1016/j.apcatb.2013.02.033.

    Article  CAS  Google Scholar 

  31. Hansen BB, Jensen AD, Jensen PA. Performance of diesel particulate filter catalysts in the presence of biodiesel ash species. Fuel. 2013;106:234–40. https://doi.org/10.1016/j.fuel.2012.11.038.

    Article  CAS  Google Scholar 

  32. Zeng L, Cui L, Wang C, Guo W, Gong C. In-situ modified the surface of Pt-doped perovskite catalyst for soot oxidation. J Hazard Mater. 2020;383:121210. https://doi.org/10.1016/j.jhazmat.2019.121210.

    Article  CAS  PubMed  Google Scholar 

  33. Wei Y, Zhao Z, Jin B, Yu X, Jiao J, Li K, et al. Synthesis of AuPt alloy nanoparticles supported on 3D ordered macroporous oxide with enhanced catalytic performance for soot combustion. Catal Today. 2015;251:103–13. https://doi.org/10.1016/j.cattod.2014.08.034.

    Article  CAS  Google Scholar 

  34. Tighe CJ, Twigg MV, Hayhurst AN, Dennis JS. The kinetics of oxidation of Diesel soots by NO2. Combust Flame. 2012;159(1):77–90. https://doi.org/10.1016/j.combustflame.2011.06.009.

    Article  CAS  Google Scholar 

  35. Müller J-O, Frank B, Jentoft RE, Schlögl R, Su DS. The oxidation of soot particulate in the presence of NO2. Catal Today. 2012;191(1):106–11. https://doi.org/10.1016/j.cattod.2012.03.010.

    Article  CAS  Google Scholar 

  36. Zhang B, Chen J, Wu G, Guo Y, Wang H. Revealing the boosting role of NO for soot combustion over CeO2(111): a first-principles microkinetic modeling. Mol Catal. 2021;509:111582. https://doi.org/10.1016/j.mcat.2021.111582.

    Article  CAS  Google Scholar 

  37. Liu J, Dumitrescu CE. Flame development analysis in a diesel optical engine converted to spark ignition natural gas operation. Appl Energy. 2018;230:1205–17. https://doi.org/10.1016/j.apenergy.2018.09.059.

    Article  CAS  Google Scholar 

  38. Fang J, Meng Z, Li J, Pu Y, Du Y, Li J, et al. The influence of ash on soot deposition and regeneration processes in diesel particular filter. Appl Therm Eng. 2017;124:633–40. https://doi.org/10.1016/j.applthermaleng.2017.06.076.

    Article  CAS  Google Scholar 

  39. Schejbal M, Štěpánek J, Marek M, Kočí P, Kubíček M. Modelling of soot oxidation by NO2 in various types of diesel particulate filters. Fuel. 2010;89(9):2365–75. https://doi.org/10.1016/j.fuel.2010.04.018.

    Article  CAS  Google Scholar 

  40. Yang Y, Fang J, Meng Z, Pu P, Zhang Q, Yi C, et al. Catalytic activity and influence factors of Mn-Ce mixed oxides by hydrothermal method on diesel soot combustion. Molecular Catalysis. 2022;524:112334. https://doi.org/10.1016/j.mcat.2022.112334.

    Article  CAS  Google Scholar 

  41. Theis JR. An assessment of Pt and Pd model catalysts for low temperature NO adsorption. Catal Today. 2016;267:93–109. https://doi.org/10.1016/j.cattod.2016.01.032.

    Article  CAS  Google Scholar 

  42. Salman AuR, Enger BC, Auvray X, Lødeng R, Menon M, Waller D, et al. Catalytic oxidation of NO to NO2 for nitric acid production over a Pt/Al2O3 catalyst. Appl Catal A Gen. 2018;564:142–6. https://doi.org/10.1016/j.apcata.2018.07.019.

    Article  CAS  Google Scholar 

  43. Wang X, Li S, Adeosun A, Li Y, Vujanović M, Tan H, et al. Effect of potassium-doping and oxygen concentration on soot oxidation in O2/CO2 atmosphere: a kinetics study by thermogravimetric analysis. Energy Convers Manag. 2017;149:686–97. https://doi.org/10.1016/j.enconman.2017.01.003.

    Article  CAS  Google Scholar 

  44. Lang Q, Zhang B, Liu Z, Chen Z, Xia Y, Li D, et al. Co-hydrothermal carbonization of corn stalk and swine manure: combustion behavior of hydrochar by thermogravimetric analysis. Bioresour Technol. 2019;271:75–83. https://doi.org/10.1016/j.biortech.2018.09.100.

    Article  CAS  PubMed  Google Scholar 

  45. Fang J, Qin Z, Meng Z, Jiang Y, Liu J, Zhang Q, et al. Performance of diesel soot oxidation in the presence of ash species. Energy Fuels. 2020;34(2):2185–92. https://doi.org/10.1021/acs.energyfuels.9b03085.

    Article  CAS  Google Scholar 

  46. Salaev MA, Salaeva AA, Kharlamova TS, Mamontov GV. Pt–CeO2-based composites in environmental catalysis: A review. Appl Catal B Environ. 2021;295:120286. https://doi.org/10.1016/j.apcatb.2021.120286.

    Article  CAS  Google Scholar 

  47. Zhang H, Hou Z, Zhu Y, Wang J, Chen Y. Sulfur deactivation mechanism of Pt/MnOx-CeO2 for soot oxidation: surface property study. Appl Surf Sci. 2017;396:560–5. https://doi.org/10.1016/j.apsusc.2016.10.196.

    Article  CAS  Google Scholar 

  48. Zhang H, Yuan S, Wang J, Gong M, Chen Y. Effects of contact model and NOx on soot oxidation activity over Pt/MnOx-CeO2 and the reaction mechanisms. Chem Eng J. 2017;327:1066–76. https://doi.org/10.1016/j.cej.2017.06.013.

    Article  CAS  Google Scholar 

  49. Castillo Marcano SJ, Bensaid S, Deorsola FA, Russo N, Fino D. Multifunctional catalyst based on BaO/Pt/CeO2 for NO2-assisted soot abatement and NOx storage. Fuel. 2015;149:78–84. https://doi.org/10.1016/j.fuel.2014.09.063.

    Article  CAS  Google Scholar 

  50. Liu J, Huang Q, Ulishney C, Dumitrescu CE. Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine. Appl Energy. 2021;300:117413. https://doi.org/10.1016/j.apenergy.2021.117413.

    Article  Google Scholar 

  51. Boubnov A, Dahl S, Johnson E, Molina AP, Simonsen SB, Cano FM, et al. Structure–activity relationships of Pt/Al2O3 catalysts for CO and NO oxidation at diesel exhaust conditions. Appl Catal B. 2012;126:315–25. https://doi.org/10.1016/j.apcatb.2012.07.029.

    Article  CAS  Google Scholar 

  52. Olsson L, Fridell E. The influence of Pt oxide formation and Pt dispersion on the reactions NO2⇔NO+1/2O2 over Pt/Al2O3 and Pt/BaO/Al2O3. J Catal. 2002;210(2):340–53. https://doi.org/10.1006/jcat.2002.3698.

    Article  CAS  Google Scholar 

  53. Crocoll M, Kureti S, Weisweiler W. Mean field modeling of NO oxidation over Pt/Al2O3 catalyst under oxygen-rich conditions. J Catal. 2005;229(2):480–9. https://doi.org/10.1016/j.jcat.2004.11.029.

    Article  CAS  Google Scholar 

  54. Matsuoka K, Orikasa H, Itoh Y, Chambrion P, Tomita A. Reaction of NO with soot over Pt-loaded catalyst in the presence of oxygen. Appl Catal B. 2000;26(2):89–99. https://doi.org/10.1016/S0926-3373(00)00111-9.

    Article  CAS  Google Scholar 

  55. Jiao Y, He J, Li S, Yao P, Fan J, Wang J, et al. The promoting effect of Pt loaded with different redox supports on NO NO2 cycle-assisted soot combustion. Combust Flame. 2023;248:112552. https://doi.org/10.1016/j.combustflame.2022.112552.

    Article  CAS  Google Scholar 

  56. Andana T, Piumetti M, Bensaid S, Veyre L, Thieuleux C, Russo N, et al. Ceria-supported small Pt and Pt3Sn nanoparticles for NOx-assisted soot oxidation. Appl Catal B. 2017;209:295–310. https://doi.org/10.1016/j.apcatb.2017.03.010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by (1) Science & Technology Department of Sichuan Province (2021YJ0332); (2) Foundation of Key Laboratory of Power Machinery and Engineering, Ministry of Education, P.R. China (202202); (3) Open Research Subject of Provincial Engineering Research Center for New Energy Vehicle Intelligent Control and Simulation Test Technology of Sichuan (XNYQ2021-001); (4) The Graduate Innovation Fund of Xihua University (YCJJ2021084); (5) Science and Technology Foundation of National Key Laboratory on Aero-Engine Aero-thermodynamics (No. 2022-JCJQ-LB-062-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Fang, J., Qin, Z. et al. Performance of soot oxidation by O2/NO/N2 atmosphere in various catalyst species. J Therm Anal Calorim 148, 5709–5718 (2023). https://doi.org/10.1007/s10973-023-12110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12110-7

Keywords

Navigation