Skip to main content
Log in

Thermal radiation and chemical reaction influence on MHD boundary layer flow of a Maxwell fluid over a stretching sheet containing nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The heat and mass transfer properties of a two-dimensional electrically conducting incompressible Maxwell fluid have been explored in the existence of, chemical reaction, heat generation/absorption, and thermal radiation. This was done by moving the fluid through a stretched sheet. Polymer extrusion and metal thinning are two instances of the vast importance of this topic from a practical standpoint. Using the appropriate similarity variables, it is feasible to non-dimensionalize the PDEs regulating the stream and their related boundary conditions. Fourth- and fifth-order Runge–Kutta–Fehlberg schemes are utilized to solve the resulting modified ODEs. The impact of the many thermo-physical parameters embedded in the system on the velocity, temperature, and concentration has been identified and quantitatively analyzed. When comparing our observations to those found in the literature, we find a lot of concordances when looking at case studies. The concentration distribution becomes more intense as the estimations of the chemical reaction parameter are improved, and the effect of thermal radiation is greater as the temperature rises. Thermophoresis is a transport force that arises when a temperature gradient exists. An increase in thermophoresis leads to a hotter surface since a thicker boundary layer means a higher temperature there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(\alpha\) :

Thermal diffusivity \(\left( {{\text{m}}^{2} \;{\text{s}}^{ - 1} } \right)\)

\(\mu\) :

Dynamic viscosity \(\left( {{\text{kg m}}^{2} \;{\text{s}}^{ - 1} } \right)\)

\({\text{Nr}}\) :

Radiation parameter

\(k_{{\text{o}}}\) :

Maxwell fluid relaxation time

\(T_{{\text{m}}}\) :

Mean fluid temperature \(\left( {\text{K}} \right)\)

\(T_{{\text{w}}}\) :

Fluid temperature close to the wall \(\left( {\text{K}} \right)\)

\(T_{\infty }\) :

Fluid temperature at infinity (K)

\(C_{{\text{p}}}\) :

Specific heat at constant pressure \(\left( {{\text{J}}\;{\text{kg}}^{{ - {1}}} \;{\text{K}}} \right)\)

\(\rho_{{\text{p}}}\) :

Density of the particles

\(T\) :

Fluid temperature (K)

\(\rho_{{\text{f}}}\) :

Density of the base fluid \(\left( {{\text{kg}}\;{\text{m}}^{ - 3} } \right)\)

\(B_{0}\) :

Magnetic field coefficient

\(K_{{\text{T}}}\) :

Thermal diffusion ratio parameter

\(D_{{\text{T}}}\) :

Thermophoretic diffusion

\(\theta\) :

Dimensionless temperature of the fluid \(\left( {\text{K}} \right)\)

\(k\) :

Thermal conductivity \(\left( {{\upomega }\;{\text{m}}^{ - 1} \;{\text{K}}^{ - 1} } \right)\)

\(D_{{\text{m}}}\) :

Mass diffusivity \(\left( {{\text{m}}^{2} \;{\text{s}}^{ - 1} } \right)\)

\(\upsilon\) :

Kinematic viscosity \(({\text{m}}^{2} \;{\text{s}}^{ - 1} )\)

\(\rho\) :

Fluid density \(\left( {{\text{kg}}/{\text{m}}^{3} } \right)\)

\(C_{{\text{s}}}\) :

Concentration susceptibility

\(\sigma\) :

Electrical conductivity \(\left( {{\Omega }^{ - 1} {\text{m}}^{ - 1} } \right)\)

\(k_{1}\) :

Chemical reaction parameter

\(\varphi\) :

Dimensionless fluid concentration \(\left( {{\text{mol}}\;{\text{m}}^{ - 3} } \right)\)

\(u,v\) :

Dimensionless velocities along x-and y-axis \(\left( {{\text{m}}\;{\text{s}}^{ - 1} } \right)\)

\({\text{Pr}}\) :

Prandtl number

\(C_{{\text{W}}}\) :

Concentration of the fluid at wall \(\left( {{\text{mol}}\;{\text{m}}^{ - 3} } \right)\)

\(C_{\infty }\) :

Fluid concentration at infinity \(\left( {{\text{mol}}\;{\text{m}}^{ - 3} } \right)\)

\(D_{{\text{B}}}\) :

Brownian diffusion

\(M\) :

Magnetic parameter

\(C\) :

Fluid concentration \(\left( {{\text{mol}}\;{\text{m}}^{ - 3} } \right)\)

References

  1. Krishna MV, Jyothi K, Chamkha AJ. Heat and mass transfer on MHD flow of second-grade fluid through porous medium over a semi-infinite vertical stretching sheet. J Porous Med. 2020;23(8):751–65.

    Article  Google Scholar 

  2. Reddy A, Chamkha PSA. Heat and mass transfer characteristics of MHD three-dimensional flow over a stretching sheet filled with water-based alumina nanofluid. Int J Numer Methods Heat Fluid Flow. 2018;28(3):532–46.

    Article  Google Scholar 

  3. Sudarsana Reddy P, Sreedevi P. Impact of chemical reaction and double stratification on heat and mass transfer characteristics of nanofluid flow over porous stretching sheet with thermal radiation. Int J Ambient Energy. 2022;43(1):1626–36.

    Article  CAS  Google Scholar 

  4. Srinivasulu T, Goud BS. Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet. Case Stud Therm Eng. 2021;23:100819.

    Article  Google Scholar 

  5. Warke AS, Ramesh K, Mebarek-Oudina F, Abidi A. Numerical investigation of the stagnation point flow of radiative magnetomicropolar liquid past a heated porous stretching sheet. J Thermal Anal Calorim. 2021: 1–12.

  6. Hayat T, Saif RS, Ellahi R, Muhammad T, Ahmad B. Numerical study of boundary-layer flow due to a nonlinear curved stretching sheet with convective heat and mass conditions. Results Phys. 2017;7:2601–6.

    Article  Google Scholar 

  7. Ferdows M, Uddin MJ, Afify AA. Scaling group transformation for MHD boundary layer free convective heat and mass transfer flow past a convectively heated nonlinear radiating stretching sheet. Int J Heat Mass Transf. 2013;56(1–2):181–7.

    Article  Google Scholar 

  8. Goud BS. Heat generation/absorption influence on steady stretched permeable surface on MHD flow of a micropolar fluid through a porous medium in the presence of variable suction/injection. Int J Thermofluids. 2020;7:100044.

    Article  Google Scholar 

  9. Bejawada SG, Khan ZH, Hamid M. Heat generation/absorption on MHD flow of a micropolar fluid over a heated stretching surface in the presence of the boundary parameter. Heat Transf. 2021;50(6):6129–47.

    Article  Google Scholar 

  10. Goud BS, Nandeppanavar MM. Ohmic heating and chemical reaction effect on MHD flow of micropolar fluid past a stretching surface. Part Differ Equ Appl Math. 2021;4:100104.

    Google Scholar 

  11. Asogwa KK, Goud BS, Shah NA, Yook SJ. Rheology of electromagnetohydrodynamic tangent hyperbolic nanofluid over a stretching riga surface featuring Dufour effect and activation energy. Sci Rep. 2022;12(1):14602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Afify AA, Elgazery NS. Effect of a chemical reaction on magnetohydrodynamic boundary layer flow of a Maxwell fluid over a stretching sheet with nanoparticles. Particuology. 2016;29:154–61.

    Article  CAS  Google Scholar 

  13. Nadeem S, Haq RU, Khan ZH. Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J Taiwan Inst Chem Eng. 2014;45(1):121–6.

    Article  CAS  Google Scholar 

  14. Mustafa M, Khan JA, Hayat T, Alsaedi A. Simulations for Maxwell fluid flow past a convectively heated exponentially stretching sheet with nanoparticles. AIP Adv. 2015;5(3):037133.

    Article  Google Scholar 

  15. Goud BS, Kumar PP, Malga BS, Reddy YD. FEM to study the radiation, Soret, Dufour numbers effect on heat and mass transfer of magneto-Casson fluid over a vertical permeable plate in the presence of viscous dissipation. Waves Random Comp Med, 2022:1–22.

  16. Shafiq A, Mebarek-Oudina F, Sindhu TN, Rasool G. Sensitivity analysis for Walters-B nanoliquid flow over a radiative Riga surface by RSM. Sci Iranica. 2022;29(3):1236–49.

    Google Scholar 

  17. Ramesh GK, Gireesha BJ, Hayat T, Alsaedi A. MHD flow of Maxwell fluid over a stretching sheet in the presence of nanoparticles, thermal radiation and chemical reaction: a numerical study. J Nanofluids. 2015;4(1):100–6.

    Article  Google Scholar 

  18. Narayana PS, Babu DH. Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation. J Taiwan Inst Chem Eng. 2016;59:18–25.

    Article  Google Scholar 

  19. Mukhopadhyay S. Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation. Ain Shams Eng J. 2013;4(3):485–91.

    Article  Google Scholar 

  20. Sajid M, Hayat T. Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet. Int Commun Heat Mass Transf. 2008;35(3):347–56.

    Article  Google Scholar 

  21. Krishna MV, Chamkha AJ. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results Phys. 2019;15:102652.

    Article  Google Scholar 

  22. Akram M, Jamshed W, Goud BS, Pasha AA, Sajid T, Rahman MM, Arshad M, Weera W. Irregular heat source impact on Carreau nanofluid flowing via exponential expanding cylinder: a thermal case study. Case Stud Thermal Eng. 2022;36:102171.

    Article  Google Scholar 

  23. Reddy YD, Mebarek-Oudina F, Goud BS, Ismail AI. Radiation, velocity and thermal slips effect toward MHD boundary layer flow through heat and mass transport of Williamson nanofluid with porous medium. Arab J Sci Eng. 2022;47(12):16355–69.

    Article  CAS  Google Scholar 

  24. Krishna MV, Chamkha AJ. Hall and ion slip effects on magnetohydrodynamic convective rotating flow of Jeffreys fluid over an impulsively moving vertical plate embedded in a saturated porous medium with Ramped wall temperature. Numer Methods Part Differ Equ. 2021;37(3):2150–77.

    Article  Google Scholar 

  25. Krishna MV. Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffreys fluid with ramped wall temperature. Int Commun Heat Mass Transf. 2020;119:104927.

    Article  Google Scholar 

  26. Krishna MV, Swarnalathamma BV, Chamkha AJ. Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate. J Ocean Eng Sci. 2019;4(3):263–75.

    Article  Google Scholar 

  27. Krishna MV, Ahamad NA, Chamkha AJ. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alex Eng J. 2020;59(2):565–77.

    Article  Google Scholar 

  28. Krishna MV, Jyothi K, Chamkha AJ. Heat and mass transfer on unsteady, magnetohydrodynamic, oscillatory flow of second-grade fluid through a porous medium between two vertical plates, under the influence of fluctuating heat source/sink, and chemical reaction. Int J Fluid Mech Res. 2018;45(5):495–77.

    Article  Google Scholar 

  29. Krishna MV, Anand PVS, Chamkha AJ. Heat and mass transfer on free convective flow of a micropolar fluid through a porous surface with inclined magnetic field and Hall effects. Special Top Rev Porous Med: An Int J. 2019: 10(3).

  30. Krishna MV. Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature. Int Commun Heat Mass Transfer. 2021;126:105399.

    Article  Google Scholar 

  31. Krishna MV, Chamkha AJ. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int Commun Heat Mass Transfer. 2020;113:104494.

    Article  CAS  Google Scholar 

  32. Krishna MV. Numerical investigation on steady natural convective flow past a perpendicular wavy surface with heat absorption/generation. Int Commun Heat Mass Transfer. 2022;139:106517.

    Article  Google Scholar 

  33. Kumar PP, Goud BS, Malga BS. Finite element study of Soret number effects on MHD flow of Jeffrey fluid through a vertical permeable moving plate. Part Differ Equ Appl Math. 2020;1:100005.

    Google Scholar 

  34. Goud BS, Kumar PP, Malga BS. Effect of heat source on an unsteady MHD free convection flow of Casson fluid past a vertical oscillating plate in porous medium using finite element analysis. Part Differ Equ Appl Math. 2020;2:100015.

    Google Scholar 

  35. Shankar Goud B, Pramod Kumar P, Malga BS. Induced magnetic field effect on MHD free convection flow in nonconducting and conducting vertical microchannel walls. Heat Transf. 2022;51(2):2201–18.

    Article  Google Scholar 

  36. Goud BS, Nandeppanavar MM. Chemical reaction and MHD flow for magnetic field effect on heat and mass transfer of fluid flow through a porous medium onto a moving vertical plate. Int J Appl Mech Eng. 2022;27(2):226–44.

    Article  CAS  Google Scholar 

  37. Amar N, Kishan N, Shankar Goud B. MHD heat transfer flow over a moving wedge with convective boundary conditions with the influence of viscous dissipation and internal heat generation/absorption. Heat Transf. 2022;51(6):5015–29.

    Article  Google Scholar 

  38. Asogwa KK, Shankar Goud B. Impact of velocity slip and heat source on tangent hyperbolic nanofluid flow over an electromagnetic surface with Soret effect and variable suction/injection. Proc Institut Mech Eng, Part E: J Process Mech Eng. 2022: 09544089221106662.

  39. Hussain SM, Goud BS, Madheshwaran P, Jamshed W, Pasha AA, Safdar R, Arshad M, Ibrahim RW, Ahmad MK. Effectiveness of nonuniform heat generation (sink) and thermal characterization of a Carreau fluid flowing across a nonlinear elongating cylinder: A numerical study. ACS Omega. 2022;7(29):25309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bejawada SG, Nandeppanavar MM. Effect of thermal radiation on magnetohydrodynamics heat transfer micropolar fluid flow over a vertical moving porous plate. Exp Comput Multiphase Flow. 2023;5(2):149–58.

    Article  Google Scholar 

  41. Hassan M, Mebarek-Oudina F, Faisal A, Ghafar A, Ismail AI. Thermal energy and mass transport of shear thinning fluid under effects of low to high shear rate viscosity. Int J Thermofluids. 2022;15:100176.

    Article  Google Scholar 

  42. Dhif K, Mebarek-Oudina F, Chouf S, Vaidya H, Chamkha AJ. Thermal analysis of the solar collector cum storage system using a hybrid-nanofluids. J Nanofluids. 2021;10(4):616–26.

    Article  Google Scholar 

  43. Mebarek-Oudina F. Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Eng Sci Technol Int J. 2017;20(4):1324–33.

    Google Scholar 

  44. Mebarek-Oudina F. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transf—Asian Res. 2019;48(1):135–47.

    Article  Google Scholar 

  45. Chabani I, Mebarek-Oudina F, Vaidya H, Ismail AI. Numerical analysis of magnetic hybrid Nano-fluid natural convective flow in an adjusted porous trapezoidal enclosure. J Magn Magn Mater. 2022;564:170142.

    Article  CAS  Google Scholar 

  46. Rajashekhar C, Mebarek-Oudina F, Vaidya H, Prasad KV, Manjunatha G, Balachandra H. Mass and heat transport impact on the peristaltic flow of a Ree-Eyring liquid through variable properties for hemodynamic flow. Heat Transfer. 2021;50(5):5106–22.

    Article  Google Scholar 

  47. Raza J, Mebarek-Oudina F, Ali Lund L. The flow of magnetised convective Casson liquid via a porous channel with shrinking and stationary walls. Pramana. 2022;96(4):229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Dharmendar Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.A., Reddy, Y.D. Thermal radiation and chemical reaction influence on MHD boundary layer flow of a Maxwell fluid over a stretching sheet containing nanoparticles. J Therm Anal Calorim 148, 6301–6309 (2023). https://doi.org/10.1007/s10973-023-12097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12097-1

Keywords

Navigation