Skip to main content
Log in

Numerical study on the fire and its propagation of large capacity lithium-ion batteries under storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A large amount of storage may cause large-scale fire or explosion accidents due to the potential fire risk of lithium-ion batteries, which poses a great threat to the safety of personnel and property. In this study, the fire model of an individual cell is established according to the experimental data and the relevant parameters of thermal runaway simulation of large capacity battery are determined. The battery pack model is established according to the real setting of a warehouse. The fire characteristics of the battery pack spreading around in the warehouse environment are studied. The results show that the fire of lithium-ion batteries is preferentially diffused to the upper battery pack in the warehouse environment, and spread to the upper battery pack 19 s after the initial battery thermal runaway. The fire propagation of the horizontal battery pack is greatly affected by the distance. The farther the battery string is from the thermal runaway battery, the later the fire propagation battery string occurs. Furthermore, the role and effect of battery pack spacing, fire warning and automatic sprinkler system in fire are provided, so as to carry out better research on the storage safety of lithium-ion battery warehouses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Chen M, Zhang S, et al. Preparation of thermally conductive composite phase change materials and its application in lithium-ion batteries thermal management. J Energy Storage. 2022;52: 104857.

    Article  Google Scholar 

  2. Mei J, Shi G, et al. Investigation on the optimization strategy of phase change material thermal management system for lithium-ion battery. J Energy Storage. 2022;55: 105365.

    Article  Google Scholar 

  3. Weng J, Ouyang D, et al. Alleviation on battery thermal runaway propagation: Effects of oxygen level and dilution gas. J Power Sources. 2021;509: 230340.

    Article  CAS  Google Scholar 

  4. Ouyang D, Weng J, et al. Electrochemical and thermal characteristics of aging lithium-ion cells after long-term cycling at abusive-temperature environments. Process Saf Environ Prot. 2022;159:1215–23.

    Article  CAS  Google Scholar 

  5. Chen M, Cui Y, et al. Experimental study on the hybrid carbon based phase change materials for thermal management performance of lithium-ion battery module. Int J Energy Res. 2022;46(12):17247–61.

    Article  CAS  Google Scholar 

  6. Liu T, Tao C, Wang X. Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules. Appl Energy. 2020;267: 115087.

    Article  CAS  Google Scholar 

  7. Wu T, Chen H, et al. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes. J Hazard Mater. 2018;344:733–41.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng Y, Han X, et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles. J Power Sources. 2013;223:136–46.

    Article  CAS  Google Scholar 

  9. Erol S, Orazem ME, Muller RP. Influence of overcharge and over-discharge on the impedance response of LiCoO2|C batteries. J Power Sources. 2014;270:92–100.

    Article  CAS  Google Scholar 

  10. Zhang L, Ma Y, et al. Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery. J Power Sources. 2015;293:1006–15.

    Article  CAS  Google Scholar 

  11. Wilke S, Schweitzer B, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study. J Power Sources. 2017;340:51–9.

    Article  CAS  Google Scholar 

  12. Fu Y, Lu S, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. J Power Sources. 2015;273:216–22.

    Article  CAS  Google Scholar 

  13. Zhao C, Sun J, Wang Q. Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter. J Energy Storage. 2020;28: 101232.

    Article  Google Scholar 

  14. Huang Z, Liu J, et al. Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions. Energy. 2021;233: 121103.

    Article  Google Scholar 

  15. Lai X, Wang S, et al. Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes. Int J Heat Mass Transf. 2021;171: 121080.

    Article  Google Scholar 

  16. Abada S, Marlair G, et al. Safety focused modeling of lithium-ion batteries: a review. J Power Sources. 2016;306:178–92.

    Article  CAS  Google Scholar 

  17. Zhang C, Santhanagopalan S, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse. J Power Sources. 2015;290:102–13.

    Article  CAS  Google Scholar 

  18. Li H, Zhou D, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse. Energy. 2023;263: 126027.

    Article  CAS  Google Scholar 

  19. Lee CH, Bae SJ, Jang M. A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation. J Power Sources. 2015;293:498–510.

    Article  CAS  Google Scholar 

  20. Xia Q, Ren Y, et al. Safety risk assessment method for thermal abuse of lithium-ion battery pack based on multiphysics simulation and improved bisection method. Energy. 2023;264: 126228.

    Article  Google Scholar 

  21. Li Y, Liu G, Li Z. Numerical modeling of thermal runaway in high-energy lithium-ion battery packs induced by multipoint heating. Case Stud Therm Eng. 2022;38: 102335.

    Article  Google Scholar 

  22. Qin P, Jia Z, et al. The thermal runaway analysis on LiFePO4 electrical energy storage packs with different venting areas and void volumes. Appl Energy. 2022;313: 118767.

    Article  CAS  Google Scholar 

  23. Jin C, Sun Y, et al. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: experiments and modeling. Appl Energy. 2022;312: 118760.

    Article  CAS  Google Scholar 

  24. Wang H, Du Z, et al. A comparative analysis on thermal runaway behavior of Li (NixCoyMnz) O2 battery with different nickel contents at cell and module level. J Hazard Mater. 2020;393: 122361.

    Article  CAS  PubMed  Google Scholar 

  25. Dai X, Kong D, et al. Investigation on effect of phase change material on the thermal runaway of lithium-ion battery and exploration of flame retardancy improvement. Process Saf Environ Prot. 2022;159:232–42.

    Article  CAS  Google Scholar 

  26. Yuan C, Wang Q, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module. Appl Therm Eng. 2019;153:39–50.

    Article  Google Scholar 

  27. Weng J, Xiao C, et al. Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives. Energy. 2022;239: 122087.

    Article  CAS  Google Scholar 

  28. Weng J, Ouyang D, et al. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material. Energy Convers Manage. 2019;200: 112071.

    Article  CAS  Google Scholar 

  29. Jiang ZY, Qu ZG, et al. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy. Appl Energy. 2020;268: 115007.

    Article  Google Scholar 

  30. Matala A, Hostikka S, Mangs J. Estimation of pyrolysis model parameters for solid materials using thermogravimetric data. Fire Saf Sci. 2008;9:1213–23.

    Article  Google Scholar 

  31. Lautenberger C, Rein G, Fernandez-Pello C. The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J. 2006;41:204–14.

    Article  Google Scholar 

  32. Hietaniemi J, Mikkola E. Design fires for fire safety engineering. Helsinki VTT Techn Res Centre Finland. 2010;90:139.

    Google Scholar 

  33. Wang Z, Yang H, et al. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods. J Hazard Mater. 2019;379: 120730.

    Article  CAS  PubMed  Google Scholar 

  34. Lin Z, Bu R, et al. Numerical investigation on fire-extinguishing performance using pulsed water mist in open and confined spaces. Case Stud Therm Eng. 2019;13: 100402.

    Article  Google Scholar 

  35. Chen M, Dongxu O, et al. Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package. Appl Therm Eng. 2019;157: 113750.

    Article  CAS  Google Scholar 

  36. Ouyang D, Weng J, et al. Experimental investigation of thermal failure propagation in typical lithium-ion battery modules. Thermochim Acta. 2019;676:205–13.

    Article  CAS  Google Scholar 

  37. Yuan S, Chang C, et al. A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J Energy Chem. 2021;62:262–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 52204213) and the Double Innovation Plan of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Chen, Y., Chen, M. et al. Numerical study on the fire and its propagation of large capacity lithium-ion batteries under storage. J Therm Anal Calorim 148, 5787–5803 (2023). https://doi.org/10.1007/s10973-023-12095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12095-3

Keywords

Navigation